
Python Handbook

A Comprehensive

Guide

Attila Asghari

2025

attilaasghari@gmail.com

python-handbook
Python Handbook: A Comprehensive Guide
By Attila Asghari
2025

Purpose of This Handbook
This handbook is designed to help learners understand Python efficiently, without
overwhelming explanations. It serves as a fast reference guide that focuses on essential
concepts and syntax. Unlike traditional programming books that dive deep into theory, this
handbook aims to be a practical, no-nonsense guide that lets you get straight to coding.

Who Is This Handbook For?
This handbook is for:

How to Use This Handbook
One of the key purposes of this book is flexibility. You don’t have to follow it in order—you
can jump between topics based on your needs. Each section is designed to be self-
contained so that you can quickly find what you’re looking for without unnecessary
distractions.

Acknowledgments
Writing this handbook has been an incredible journey, and I couldn’t have done it without the
support and encouragement of the people around me. I’d like to take a moment to express
my gratitude to those who made this book possible.
First and foremost, I want to thank my amazing girlfriend, Amanda (Asal) Karimi, for her
unwavering support, patience, and encouragement throughout this process. Her belief in me
kept me motivated, even when the challenges seemed overwhelming. Thank you for being
my inspiration and my rock.
Finally, thank you to the readers of this book. Your curiosity and eagerness to learn are what
drive me to share my knowledge. I hope this book helps you on your Python journey and
inspires you to create amazing things.

Beginners who are just starting with Python.
Intermediate learners who want to reinforce their knowledge.
Students looking for a quick reference while learning Python in school or university.
Self-learners who prefer an efficient and structured way to grasp Python concepts.

About the Author
My name is Attila Asghari, and I am a final-year Computer Engineering student. I have a
deep interest in Artificial Intelligence (AI), Machine Learning (ML), Embedded Systems, and
Data Science. While learning Data Science, I realized that I needed a resource to quickly
grasp Python without unnecessary explanations—something like a structured cheat sheet.
Since I couldn’t find exactly what I was looking for, I decided to create this handbook.

Website: https://attila.vitren.ir

Website: https://ata.vitren.ir

Email: attilaasghari@gmail.com

Prerequisites
This book assumes no prior programming experience. However, familiarity with basic
computer operations (e.g., installing software, navigating files) will be helpful. To get started,
you'll need:

If you're new to Python, don't worry! The first section of the book will guide you through the
basics step by step.

Tools and Setup
To follow along with the examples in this book, you'll need to set up your Python
environment. Here's how to get started:

A computer with Python installed (Python 3.x is recommended).
A text editor or IDE (Integrated Development Environment) for writing and running
Python code. Popular options include:

Jupyter Notebook (used to write this book)
VS Code
PyCharm
IDLE (comes with Python)

1. Install Python:
Download the latest version of Python from the official website:
https://www.python.org/downloads/
Follow the installation instructions for your operating system.

2. Install Jupyter Notebook (optional but recommended):
Open a terminal or command prompt and run:

pip install notebook

Launch Jupyter Notebook by running:

https://attila.vitren.ir/
https://ata.vitren.ir/
https://www.python.org/downloads/

Once your environment is set up, you're ready to start coding!

Links to IDE and Text Editors

Name Link

Visual Studio Code https://code.visualstudio.com/

Sublime Text https://www.sublimetext.com/

PyCharm https://www.jetbrains.com/pycharm/

Jupyter https://jupyter.org/

Table of Contents

Beginner Python

jupyter-notebook

3. Install a Text Editor or IDE:
If you prefer a lightweight editor, install VS Code or Sublime Text.
If you want a full-featured IDE, install PyCharm.

4. Verify Your Setup:
Open a terminal or command prompt and type:

python --version

You should see the installed Python version (e.g., Python 3.10.0).

1. Introduction
2. Variables & Data Types
3. Working With Strings
4. Working With Numbers
5. Getting Input From Users
6. Lists
7. List Functions
8. Tuples
9. Functions

10. Return Statement
11. If Statements
12. If Statements & Comparisons
13. Dictionaries
14. While Loop
15. Building a Guessing Game
16. For Loops

https://code.visualstudio.com/
https://www.sublimetext.com/
https://www.jetbrains.com/pycharm/
https://jupyter.org/

Intermediate Python

1. Introduction to Python
Python is a high-level, interpreted programming language known for its simplicity and
readability. It was created by Guido van Rossum and first released in 1991. Python is widely

17. Exponent Function
18. 2D Lists & Nested Loops
19. Comments
20. Try / Except
21. Reading Files
22. Writing to Files
23. Modules & Pip
24. Classes & Objects
25. Object Functions
26. Inheritance

1. Intro
2. Lists
3. Tuples
4. Dictionaries
5. Sets
6. Strings
7. Collections
8. Itertools
9. Lambda Functions

10. Exceptions and Errors
11. Logging
12. JSON
13. Random Numbers
14. Decorators
15. Generators
16. Threading vs Multiprocessing
17. Multithreading
18. Multiprocessing
19. Function Arguments
20. The Asterisk (*) Operator
21. Shallow vs Deep Copying
22. Context Managers

used in various fields, including web development, data science, artificial intelligence,
automation, and more.

Why Learn Python?

Installing Python

Writing Your First Python Program

Python programs are written in .py files. You can use any text editor or an Integrated
Development Environment (IDE) like PyCharm, VS Code, or Jupyter Notebook.

Let’s write a simple program:

Running a Python Program

Easy to Learn: Python’s syntax is straightforward and resembles English, making it
beginner-friendly.
Versatile: It can be used for web development, data analysis, machine learning,
automation, and more.
Large Community: Python has a vast community of developers, so finding help or
libraries is easy.
Cross-Platform: Python runs on Windows, macOS, Linux, and other platforms.

1. Download Python: Visit the official Python website (python.org) and download the latest
version for your operating system.

2. Install Python: Follow the installation instructions. Make sure to check the box that says
"Add Python to PATH" during installation.

3. Verify Installation: Open a terminal or command prompt and type python --version
or python3 --version . If Python is installed correctly, it will display the version number.

This is a comment. Comments are ignored by the Python interpreter.

print("Hello, World!")

Hello, World!

Explanation:
print() is a built-in function that outputs text to the console.
"Hello, World!" is a string, which is a sequence of characters enclosed in
quotes.

4. Save the file with a .py extension, e.g., hello.py .
5. Open a terminal or command prompt.
6. Navigate to the folder where the file is saved.

https://www.python.org/

Python Syntax Basics

Python Modes

2. Variables & Data Types

What Are Variables?

A variable is a named location in memory used to store data. Think of it as a container that
holds a value. In Python, you don’t need to declare the type of a variable explicitly; Python
automatically infers the type based on the value assigned.

7. Run the program by typing python hello.py or python3 hello.py .

Indentation: Python uses indentation (spaces or tabs) to define blocks of code. Unlike
other languages, indentation is mandatory in Python.

if 5 > 2:

print("Five is greater than two!")

Five is greater than two!

Case Sensitivity: Python is case-sensitive, so myVariable and myvariable are
treated as different names.
Comments: Use # for single-line comments and ''' or """ for multi-line comments.

This is a single-line comment

'''

This is a

multi-line comment

'''

'\nThis is a\nmulti-line comment\n'

8. Interactive Mode: You can run Python code directly in the terminal by typing python or
python3 . This is useful for testing small snippets of code.

$ python

>>> print("Hello, Python!")

Hello, Python!

9. Script Mode: Save your code in a .py file and execute it as a script.

Rules for Naming Variables

Assigning Values to Variables

Use the = operator to assign a value to a variable.

Data Types in Python

Python has several built-in data types. The most common ones are:

1. Variable names must start with a letter (a-z, A-Z) or an underscore (_).
2. The rest of the name can contain letters, numbers, or underscores.
3. Variable names are case-sensitive (myVar and myvar are different).
4. Avoid using Python keywords (e.g., if , else , for , while , etc.) as variable names.

x = 10 # x is an integer

name = "Alice" # name is a string

is_student = True # is_student is a boolean

1. Integers (int): Whole numbers, positive or negative.

age = 25

2. Floats (float): Decimal numbers.

height = 5.9

3. Strings (str): Sequences of characters enclosed in single or double quotes.

name = "Alice"

greeting = 'Hello, World!'

4. Booleans (bool): Represents True or False .

is_student = True

is_working = False

5. Lists (list): Ordered, mutable collections of items.

fruits = ["apple", "banana", "cherry"]

6. Tuples (tuple): Ordered, immutable collections of items.

Dynamic Typing

Python is dynamically typed, meaning you don’t need to declare the type of a variable. The
type is determined at runtime based on the value assigned.

Checking Data Types

You can use the type() function to check the data type of a variable.

Type Conversion

You can convert one data type to another using built-in functions like int() , float() ,
str() , etc.

coordinates = (10.0, 20.0)

7. Dictionaries (dict): Unordered collections of key-value pairs.

person = {"name": "Alice", "age": 25}

8. Sets (set): Unordered collections of unique items.

unique_numbers = {1, 2, 3, 4}

x = 10 # x is an integer

x = "Hello" # Now x is a string

x = 10

print(type(x)) # Output: <class 'int'>

y = "Python"

print(type(y)) # Output: <class 'str'>

<class 'int'>

<class 'str'>

x = 10

y = float(x) # Convert integer to float

print(y) # Output: 10.0

z = str(x) # Convert integer to string

print(z) # Output: "10"

Variable Naming Conventions

Example Program

3. Working With Strings
A string is a sequence of characters enclosed in single (') or double (") quotes. Strings
are one of the most commonly used data types in Python, and Python provides many built-in
methods to work with them.

Creating Strings

You can create strings using single or double quotes:

10.0

10

Use descriptive names (e.g., user_age instead of x).
Use lowercase letters and underscores for variable names (snake_case).
Avoid single-letter names unless they’re used in a small scope (e.g., loop counters).

Variables and Data Types

name = "Alice"

age = 25

height = 5.9

is_student = True

Displaying values and types

print("Name:", name, type(name))

print("Age:", age, type(age))

print("Height:", height, type(height))

print("Is Student:", is_student, type(is_student))

Name: Alice <class 'str'>

Age: 25 <class 'int'>

Height: 5.9 <class 'float'>

Is Student: True <class 'bool'>

string1 = "Hello, World!"

string2 = 'Python is fun!'

If your string contains a single quote, use double quotes, and vice versa:

For multi-line strings, use triple quotes (''' or """):

String Operations

string3 = "It's a beautiful day."

string4 = 'He said, "Python is awesome!"'

multi_line_string = """This is a

multi-line

string."""

1. Concatenation: Combine strings using the + operator.

first_name = "Alice"

last_name = "Smith"

full_name = first_name + " " + last_name

print(full_name) # Output: Alice Smith

Alice Smith

2. Repetition: Repeat a string using the * operator.

laugh = "Ha"

print(laugh * 3) # Output: HaHaHa

HaHaHa

3. Length: Use the len() function to get the length of a string.

text = "Python"

print(len(text)) # Output: 6

6

4. Indexing: Access individual characters in a string using their index. Python uses zero-
based indexing.

Negative indexing starts from the end:

String Methods

Python provides many built-in methods to manipulate strings. Here are some commonly
used ones:

text = "Python"

print(text[0]) # Output: P

print(text[3]) # Output: h

P

h

print(text[-1]) # Output: n

print(text[-2]) # Output: o

n

o

5. Slicing: Extract a substring using slicing. The syntax is [start:end:step] .

text = "Python Programming"

print(text[0:6]) # Output: Python

print(text[7:18]) # Output: Programming

print(text[:6]) # Output: Python (from start to index 5)

print(text[7:]) # Output: Programming (from index 7 to end)

print(text[::2]) # Output: Pto rgamn (every second character)

Python

Programming

Python

Programming

Pto rgamn

6. upper() : Converts the string to uppercase.

text = "Python"

print(text.upper()) # Output: PYTHON

PYTHON

7. lower() : Converts the string to lowercase.

text = "Python"

print(text.lower()) # Output: python

python

8. strip() : Removes leading and trailing whitespace.

text = " Python "

print(text.strip()) # Output: Python

Python

9. replace() : Replaces a substring with another substring.

text = "Hello, World!"

print(text.replace("World", "Python")) # Output: Hello, Python!

Hello, Python!

10. split() : Splits the string into a list of substrings based on a delimiter.

text = "Python is fun"

print(text.split(" ")) # Output: ['Python', 'is', 'fun']

['Python', 'is', 'fun']

11. find() : Returns the index of the first occurrence of a substring. Returns -1 if not
found.

text = "Python is fun"

print(text.find("is")) # Output: 7

7

12. count() : Counts the number of occurrences of a substring.

String Formatting

text = "Python is fun and Python is easy"

print(text.count("Python")) # Output: 2

2

13. startswith() and endswith() : Checks if a string starts or ends with a specific
substring.

text = "Python is fun"

print(text.startswith("Python")) # Output: True

print(text.endswith("fun")) # Output: True

True

True

14. Using f-strings (Python 3.6+): Embed expressions inside string literals.

name = "Alice"

age = 25

print(f"My name is {name} and I am {age} years old.")

Output: My name is Alice and I am 25 years old.

My name is Alice and I am 25 years old.

15. Using format() : Insert values into placeholders {} .

name = "Alice"

age = 25

print("My name is {} and I am {} years old.".format(name, age))

Output: My name is Alice and I am 25 years old.

My name is Alice and I am 25 years old.

16. Using % (older style):

name = "Alice"

age = 25

Escape Characters

Escape characters are used to include special characters in strings:

Example:

Example Program

print("My name is %s and I am %d years old." % (name, age))

Output: My name is Alice and I am 25 years old.

My name is Alice and I am 25 years old.

\n : Newline
\t : Tab
\\ : Backslash
\" : Double quote
\' : Single quote

print("Hello,\nWorld!") # Output: Hello,

World!

Hello,

World!

Working with Strings

text = "Python is fun!"

String operations

print("Length:", len(text))

print("First character:", text[0])

print("Last character:", text[-1])

print("Substring:", text[0:6])

String methods

print("Uppercase:", text.upper())

print("Lowercase:", text.lower())

print("Replace 'fun' with 'awesome':", text.replace("fun", "awesome"))

String formatting

name = "Alice"

4. Working With Numbers
Python supports various types of numbers, including integers, floats, and complex numbers.
In this section, we’ll focus on integers and floats, which are the most commonly used
numeric types.

Types of Numbers

Basic Arithmetic Operations

Python supports the following arithmetic operations:

age = 25

print(f"My name is {name} and I am {age} years old.")

Length: 14

First character: P

Last character: !

Substring: Python

Uppercase: PYTHON IS FUN!

Lowercase: python is fun!

Replace 'fun' with 'awesome': Python is awesome!

My name is Alice and I am 25 years old.

1. Integers (int): Whole numbers, positive or negative, without decimals.

x = 10

y = -5

2. Floats (float): Numbers with decimal points.

pi = 3.14

temperature = -10.5

3. Complex Numbers: Numbers with a real and imaginary part (e.g., 3 + 4j). We won’t
cover these in detail here.

Addition (+)
Subtraction (-)

Order of Operations (PEMDAS/BODMAS)

Python follows the standard mathematical order of operations:
4. Parentheses
5. Exponents
6. Multiplication and Division (from left to right)
7. Addition and Subtraction (from left to right)

Example:

You can use parentheses to change the order of operations:

Multiplication (*)
Division (/)
Floor Division (//)
Modulus (%)
Exponentiation (**)

a = 10

b = 3

print(a + b) # Output: 13 (Addition)

print(a - b) # Output: 7 (Subtraction)

print(a * b) # Output: 30 (Multiplication)

print(a / b) # Output: 3.333... (Division)

print(a // b) # Output: 3 (Floor Division - rounds down to the nearest

integer)

print(a % b) # Output: 1 (Modulus - remainder of division)

print(a ** b) # Output: 1000 (Exponentiation - a raised to the power of b)

13

7

30

3.3333333333333335

3

1

1000

result = 10 + 3 * 2 ** 2 # 2 ** 2 = 4 → 3 * 4 = 12 → 10 + 12 = 22

print(result) # Output: 22

22

Type Conversion Between Numbers

You can convert between integers and floats using the int() and float() functions:

Common Math Functions

Python provides a built-in math module for advanced mathematical operations. To use it,
you need to import the module:

Here are some commonly used functions:

result = (10 + 3) * 2 ** 2 # 10 + 3 = 13 → 2 ** 2 = 4 → 13 * 4 = 52

print(result) # Output: 52

52

x = 10

y = 3.14

Convert float to integer

print(int(y)) # Output: 3 (truncates the decimal part)

Convert integer to float

print(float(x)) # Output: 10.0

3

10.0

import math

8. math.sqrt() : Square root.

print(math.sqrt(16)) # Output: 4.0

4.0

9. math.pow() : Exponentiation.

Handling Large Numbers

Python can handle very large integers without any issues:

print(math.pow(2, 3)) # Output: 8.0 (2 raised to the power of 3)

8.0

10. math.floor() : Rounds a number down to the nearest integer.

print(math.floor(3.7)) # Output: 3

3

11. math.ceil() : Rounds a number up to the nearest integer.

print(math.ceil(3.2)) # Output: 4

4

12. math.fabs() : Absolute value.

print(math.fabs(-10)) # Output: 10.0

10.0

13. math.pi and math.e : Constants for π and e.

print(math.pi) # Output: 3.141592653589793

print(math.e) # Output: 2.718281828459045

3.141592653589793

2.718281828459045

large_number = 123456789012345678901234567890

print(large_number) # Output: 123456789012345678901234567890

For very large floats, you can use scientific notation:

Example Program

123456789012345678901234567890

scientific_number = 1.23e6 # 1.23 * 10^6

print(scientific_number) # Output: 1230000.0

1230000.0

Working with Numbers

a = 10

b = 3

Arithmetic operations

print("Addition:", a + b)

print("Subtraction:", a - b)

print("Multiplication:", a * b)

print("Division:", a / b)

print("Floor Division:", a // b)

print("Modulus:", a % b)

print("Exponentiation:", a ** b)

Order of operations

result = (a + b) * 2 ** 2

print("Result of (a + b) * 2 ** 2:", result)

Type conversion

x = 3.14

print("Convert float to int:", int(x))

print("Convert int to float:", float(a))

Math module

import math

print("Square root of 16:", math.sqrt(16))

print("2 raised to the power of 3:", math.pow(2, 3))

print("Floor of 3.7:", math.floor(3.7))

print("Ceiling of 3.2:", math.ceil(3.2))

print("Absolute value of -10:", math.fabs(-10))

print("Value of pi:", math.pi)

5. Getting Input From Users
In Python, you can interact with users by taking input from them using the input() function.
This allows your program to dynamically respond to user-provided data.

The input() Function

The input() function reads a line of text from the user and returns it as a string. You can
optionally provide a prompt to guide the user.

Syntax:

Example:

Addition: 13

Subtraction: 7

Multiplication: 30

Division: 3.3333333333333335

Floor Division: 3

Modulus: 1

Exponentiation: 1000

Result of (a + b) * 2 ** 2: 52

Convert float to int: 3

Convert int to float: 10.0

Square root of 16: 4.0

2 raised to the power of 3: 8.0

Floor of 3.7: 3

Ceiling of 3.2: 4

Absolute value of -10: 10.0

Value of pi: 3.141592653589793

input(prompt)

prompt : A string that is displayed to the user before they enter their input (optional).

name = input("Enter your name: ")

print("Hello,", name)

Enter your name: Attila

Important Notes About input()

Be careful when converting input, as invalid input (e.g., entering text when a number is
expected) will cause an error. We’ll cover error handling later.

Example: Simple Calculator

Let’s create a simple program that takes two numbers from the user and performs basic
arithmetic operations:

Hello, Attila

When you run this program, it will display "Enter your name: " and wait for the user to
type something. After the user presses Enter, the input is stored in the variable name .

1. Input is Always a String: The input() function always returns the user’s input as a
string, even if the user enters a number.

age = input("Enter your age: ")

print(type(age)) # Output: <class 'str'>

Enter your age: 23

<class 'str'>

2. Converting Input to Other Data Types: If you need the input as a number (e.g., integer
or float), you must explicitly convert it using int() or float() .

age = int(input("Enter your age: "))

print(type(age)) # Output: <class 'int'>

Enter your age: 23

<class 'int'>

Simple Calculator

num1 = float(input("Enter the first number: "))

Handling Multiple Inputs

If you want the user to enter multiple values at once, you can use the split() method to
separate the input into a list of strings. Then, convert them to the desired data type.

Example:

Example: User Registration

Here’s a program that collects user information and displays it back:

num2 = float(input("Enter the second number: "))

print("Addition:", num1 + num2)

print("Subtraction:", num1 - num2)

print("Multiplication:", num1 * num2)

print("Division:", num1 / num2)

Enter the first number: 19

Enter the second number: 91

Addition: 110.0

Subtraction: -72.0

Multiplication: 1729.0

Division: 0.2087912087912088

Taking multiple inputs

values = input("Enter two numbers separated by a space: ").split()

num1 = float(values[0])

num2 = float(values[1])

print("Sum:", num1 + num2)

Enter two numbers separated by a space: 10 20

Sum: 30.0

If the user enters 10 20 , the program will output Sum: 30 .

Error Handling for User Input

When converting user input to numbers, invalid input (e.g., entering text instead of a
number) will cause a ValueError . We’ll cover error handling in detail later, but here’s a
basic example using a try-except block:

Example Program

Here’s a complete example that combines everything we’ve learned:

User Registration

name = input("Enter your name: ")

age = int(input("Enter your age: "))

email = input("Enter your email: ")

print("\nUser Details:")

print(f"Name: {name}")

print(f"Age: {age}")

print(f"Email: {email}")

Enter your name: attila

Enter your age: 23

Enter your email: attilaasghari@gmail.com

User Details:

Name: attila

Age: 23

Email: attilaasghari@gmail.com

try:

age = int(input("Enter your age: "))

print("Your age is:", age)

except ValueError:

print("Invalid input! Please enter a valid number.")

Enter your age: hello

Invalid input! Please enter a valid number.

6. Lists
A list is a versatile and widely used data structure in Python. It is an ordered, mutable
(changeable) collection of items. Lists can store elements of different data types, including
numbers, strings, and even other lists.

Creating Lists

Lists are created by enclosing elements in square brackets [] , separated by commas.

Syntax:

Examples:

Getting Input From Users

name = input("Enter your name: ")

age = int(input("Enter your age: "))

height = float(input("Enter your height in meters: "))

print("\nUser Profile:")

print(f"Name: {name}")

print(f"Age: {age}")

print(f"Height: {height} meters")

Simple calculation

birth_year = 2023 - age

print(f"You were born in {birth_year}.")

Enter your name: attila

Enter your age: 23

Enter your height in meters: 1.85

User Profile:

Name: attila

Age: 23

Height: 1.85 meters

You were born in 2000.

my_list = [element1, element2, element3]

Accessing List Elements

You can access elements in a list using their index. Python uses zero-based indexing,
meaning the first element has an index of 0 .

Syntax:

Examples:

List of integers

numbers = [1, 2, 3, 4, 5]

List of strings

fruits = ["apple", "banana", "cherry"]

Mixed data types

mixed_list = [1, "apple", 3.14, True]

Nested list (list inside a list)

matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

my_list[index]

fruits = ["apple", "banana", "cherry"]

print(fruits[0]) # Output: apple

print(fruits[1]) # Output: banana

print(fruits[2]) # Output: cherry

apple

banana

cherry

Negative Indexing: You can also use negative indices to access elements from the end
of the list.

print(fruits[-1]) # Output: cherry (last element)

print(fruits[-2]) # Output: banana (second last element)

cherry

banana

Modifying Lists

Lists are mutable, meaning you can change their elements after creation.

Slicing: You can extract a sublist using slicing. The syntax is [start:end:step] .

numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9]

print(numbers[2:5]) # Output: [3, 4, 5] (elements from index 2 to 4)

print(numbers[:4]) # Output: [1, 2, 3, 4] (elements from start to index

3)

print(numbers[5:]) # Output: [6, 7, 8, 9] (elements from index 5 to

end)

print(numbers[::2]) # Output: [1, 3, 5, 7, 9] (every second element)

[3, 4, 5]

[1, 2, 3, 4]

[6, 7, 8, 9]

[1, 3, 5, 7, 9]

1. Updating an Element:

fruits = ["apple", "banana", "cherry"]

fruits[1] = "blueberry"

print(fruits) # Output: ["apple", "blueberry", "cherry"]

['apple', 'blueberry', 'cherry']

2. Adding Elements:
append() : Adds an element to the end of the list.

fruits.append("orange")

print(fruits) # Output: ["apple", "blueberry", "cherry", "orange"]

['apple', 'blueberry', 'cherry', 'orange']

insert() : Inserts an element at a specific index.

fruits.insert(1, "mango")

print(fruits) # Output: ["apple", "mango", "blueberry", "cherry",

List Operations

"orange"]

['apple', 'mango', 'blueberry', 'cherry', 'orange']

3. Removing Elements:
remove() : Removes the first occurrence of a specific value.

fruits.remove("blueberry")

print(fruits) # Output: ["apple", "mango", "cherry", "orange"]

['apple', 'mango', 'cherry', 'orange']

pop() : Removes and returns the element at a specific index (or the last element if no
index is provided).

removed_fruit = fruits.pop(1)

print(removed_fruit) # Output: mango

print(fruits) # Output: ["apple", "cherry", "orange"]

mango

['apple', 'cherry', 'orange']

del : Deletes an element or a slice of elements.

del fruits[0]

print(fruits) # Output: ["cherry", "orange"]

['cherry', 'orange']

4. Clearing the List:
clear() : Removes all elements from the list.

fruits.clear()

print(fruits) # Output: []

[]

List Methods

Here are some commonly used list methods:

1. Concatenation: Combine two lists using the + operator.

list1 = [1, 2, 3]

list2 = [4, 5, 6]

combined = list1 + list2

print(combined) # Output: [1, 2, 3, 4, 5, 6]

[1, 2, 3, 4, 5, 6]

2. Repetition: Repeat a list using the * operator.

repeated = [1, 2] * 3

print(repeated) # Output: [1, 2, 1, 2, 1, 2]

[1, 2, 1, 2, 1, 2]

3. Length: Use the len() function to get the number of elements in a list.

numbers = [1, 2, 3, 4, 5]

print(len(numbers)) # Output: 5

5

4. Membership: Check if an element exists in a list using the in keyword.

fruits = ["apple", "banana", "cherry"]

print("banana" in fruits) # Output: True

print("mango" in fruits) # Output: False

True

False

1. sort() : Sorts the list in ascending order (or alphabetically for strings).

Example Program

numbers = [3, 1, 4, 1, 5, 9]

numbers.sort()

print(numbers) # Output: [1, 1, 3, 4, 5, 9]

[1, 1, 3, 4, 5, 9]

2. reverse() : Reverses the order of the list.

numbers.reverse()

print(numbers) # Output: [9, 5, 4, 3, 1, 1]

[9, 5, 4, 3, 1, 1]

3. copy() : Returns a shallow copy of the list.

new_numbers = numbers.copy()

print(new_numbers) # Output: [9, 5, 4, 3, 1, 1]

[9, 5, 4, 3, 1, 1]

4. index() : Returns the index of the first occurrence of a value.

print(numbers.index(4)) # Output: 2

2

5. count() : Returns the number of occurrences of a value.

print(numbers.count(1)) # Output: 2

2

Working with Lists

fruits = ["apple", "banana", "cherry"]

Accessing elements

7. List Functions
Python provides a variety of built-in functions and methods to work with lists. These functions
allow you to manipulate, analyze, and transform lists efficiently. In this section, we’ll explore
some of the most commonly used list functions and methods.

Common List Functions

print("First fruit:", fruits[0])

print("Last fruit:", fruits[-1])

Modifying lists

fruits.append("orange")

fruits.insert(1, "mango")

fruits.remove("banana")

removed_fruit = fruits.pop(2)

List operations

print("Fruits:", fruits)

print("Number of fruits:", len(fruits))

print("Is 'apple' in the list?", "apple" in fruits)

Sorting and reversing

fruits.sort()

print("Sorted fruits:", fruits)

fruits.reverse()

print("Reversed fruits:", fruits)

First fruit: apple

Last fruit: cherry

Fruits: ['apple', 'mango', 'orange']

Number of fruits: 3

Is 'apple' in the list? True

Sorted fruits: ['apple', 'mango', 'orange']

Reversed fruits: ['orange', 'mango', 'apple']

1. len() : Returns the number of elements in a list.

numbers = [1, 2, 3, 4, 5]

print(len(numbers)) # Output: 5

5

2. max() : Returns the largest element in a list.

print(max(numbers)) # Output: 5

5

3. min() : Returns the smallest element in a list.

print(min(numbers)) # Output: 1

1

4. sum() : Returns the sum of all elements in a list (only for numeric lists).

print(sum(numbers)) # Output: 15

15

5. sorted() : Returns a new sorted list without modifying the original list.

unsorted = [3, 1, 4, 1, 5, 9]

sorted_list = sorted(unsorted)

print(sorted_list) # Output: [1, 1, 3, 4, 5, 9]

print(unsorted) # Output: [3, 1, 4, 1, 5, 9] (original list

unchanged)

[1, 1, 3, 4, 5, 9]

[3, 1, 4, 1, 5, 9]

6. any() : Returns True if at least one element in the list is True (or truthy).

boolean_list = [False, True, False]

print(any(boolean_list)) # Output: True

True

7. all() : Returns True if all elements in the list are True (or truthy).

Common List Methods

print(all(boolean_list)) # Output: False

False

8. append() : Adds an element to the end of the list.

fruits = ["apple", "banana"]

fruits.append("cherry")

print(fruits) # Output: ["apple", "banana", "cherry"]

['apple', 'banana', 'cherry']

9. extend() : Adds all elements of an iterable (e.g., list, tuple) to the end of the list.

fruits.extend(["orange", "mango"])

print(fruits) # Output: ["apple", "banana", "cherry", "orange", "mango"]

['apple', 'banana', 'cherry', 'orange', 'mango']

10. insert() : Inserts an element at a specific index.

fruits.insert(1, "blueberry")

print(fruits) # Output: ["apple", "blueberry", "banana", "cherry",

"orange", "mango"]

['apple', 'blueberry', 'banana', 'cherry', 'orange', 'mango']

11. remove() : Removes the first occurrence of a specific value.

fruits.remove("banana")

print(fruits) # Output: ["apple", "blueberry", "cherry", "orange",

"mango"]

['apple', 'blueberry', 'cherry', 'orange', 'mango']

12. pop() : Removes and returns the element at a specific index (or the last element if no
index is provided).

removed_fruit = fruits.pop(2)

print(removed_fruit) # Output: cherry

print(fruits) # Output: ["apple", "blueberry", "orange", "mango"]

cherry

['apple', 'blueberry', 'orange', 'mango']

13. clear() : Removes all elements from the list.

fruits.clear()

print(fruits) # Output: []

[]

14. index() : Returns the index of the first occurrence of a value.

numbers = [10, 20, 30, 20, 40]

print(numbers.index(20)) # Output: 1

1

15. count() : Returns the number of occurrences of a value.

print(numbers.count(20)) # Output: 2

2

16. sort() : Sorts the list in place (modifies the original list).

numbers.sort()

print(numbers) # Output: [10, 20, 20, 30, 40]

[10, 20, 20, 30, 40]

You can also sort in descending order:

List Comprehensions

List comprehensions provide a concise way to create lists. They are often used to apply an
operation to each element in a list or to filter elements.

Syntax:

Examples:
19. Create a list of squares:

numbers.sort(reverse=True)

print(numbers) # Output: [40, 30, 20, 20, 10]

[40, 30, 20, 20, 10]

17. reverse() : Reverses the order of the list in place.

numbers.reverse()

print(numbers) # Output: [10, 20, 20, 30, 40]

[10, 20, 20, 30, 40]

18. copy() : Returns a shallow copy of the list.

new_numbers = numbers.copy()

print(new_numbers) # Output: [10, 20, 20, 30, 40]

[10, 20, 20, 30, 40]

[expression for item in iterable if condition]

squares = [x ** 2 for x in range(1, 6)]

print(squares) # Output: [1, 4, 9, 16, 25]

[1, 4, 9, 16, 25]

20. Filter even numbers:

Example Program

even_numbers = [x for x in range(10) if x % 2 == 0]

print(even_numbers) # Output: [0, 2, 4, 6, 8]

[0, 2, 4, 6, 8]

21. Convert strings to uppercase:

fruits = ["apple", "banana", "cherry"]

uppercase_fruits = [fruit.upper() for fruit in fruits]

print(uppercase_fruits) # Output: ["APPLE", "BANANA", "CHERRY"]

['APPLE', 'BANANA', 'CHERRY']

List Functions and Methods

numbers = [3, 1, 4, 1, 5, 9]

Common functions

print("Length:", len(numbers))

print("Max:", max(numbers))

print("Min:", min(numbers))

print("Sum:", sum(numbers))

print("Sorted:", sorted(numbers))

Common methods

numbers.append(2)

print("After append:", numbers)

numbers.extend([7, 8])

print("After extend:", numbers)

numbers.insert(2, 10)

print("After insert:", numbers)

numbers.remove(1)

print("After remove:", numbers)

popped = numbers.pop(3)

print("Popped element:", popped)

print("After pop:", numbers)

print("Index of 5:", numbers.index(5))

8. Tuples
A tuple is an ordered, immutable (unchangeable) collection of elements. Tuples are similar
to lists, but unlike lists, once a tuple is created, its elements cannot be modified, added, or
removed. Tuples are often used for fixed data that shouldn’t change, such as coordinates,
dates, or configurations.

Creating Tuples

Tuples are created by enclosing elements in parentheses () , separated by commas. If a
tuple has only one element, you must include a trailing comma to distinguish it from a regular
value.

Syntax:

print("Count of 1:", numbers.count(1))

numbers.sort()

print("Sorted list:", numbers)

numbers.reverse()

print("Reversed list:", numbers)

List comprehension

squares = [x ** 2 for x in numbers]

print("Squares:", squares)

Length: 6

Max: 9

Min: 1

Sum: 23

Sorted: [1, 1, 3, 4, 5, 9]

After append: [3, 1, 4, 1, 5, 9, 2]

After extend: [3, 1, 4, 1, 5, 9, 2, 7, 8]

After insert: [3, 1, 10, 4, 1, 5, 9, 2, 7, 8]

After remove: [3, 10, 4, 1, 5, 9, 2, 7, 8]

Popped element: 1

After pop: [3, 10, 4, 5, 9, 2, 7, 8]

Index of 5: 3

Count of 1: 0

Sorted list: [2, 3, 4, 5, 7, 8, 9, 10]

Reversed list: [10, 9, 8, 7, 5, 4, 3, 2]

Squares: [100, 81, 64, 49, 25, 16, 9, 4]

Examples:

Accessing Tuple Elements

Like lists, tuples support indexing and slicing to access elements.

my_tuple = (element1, element2, element3)

Tuple of integers

numbers = (1, 2, 3, 4, 5)

Tuple of strings

fruits = ("apple", "banana", "cherry")

Mixed data types

mixed_tuple = (1, "apple", 3.14, True)

Single-element tuple

single_element = (42,) # Note the trailing comma

Without the trailing comma, Python will treat it as a regular value:

not_a_tuple = (42) # This is an integer, not a tuple

1. Indexing: Access elements using their index (zero-based).

fruits = ("apple", "banana", "cherry")

print(fruits[0]) # Output: apple

print(fruits[2]) # Output: cherry

apple

cherry

2. Negative Indexing: Access elements from the end of the tuple.

print(fruits[-1]) # Output: cherry (last element)

print(fruits[-2]) # Output: banana (second last element)

cherry

banana

3. Slicing: Extract a subtuple using slicing.

Tuples Are Immutable

Unlike lists, tuples cannot be modified after creation. This means you cannot:

Example:

Tuple Operations

numbers = (1, 2, 3, 4, 5, 6, 7, 8, 9)

print(numbers[2:5]) # Output: (3, 4, 5) (elements from index 2 to 4)

print(numbers[:4]) # Output: (1, 2, 3, 4) (elements from start to

index 3)

print(numbers[5:]) # Output: (6, 7, 8, 9) (elements from index 5 to

end)

print(numbers[::2]) # Output: (1, 3, 5, 7, 9) (every second element)

(3, 4, 5)

(1, 2, 3, 4)

(6, 7, 8, 9)

(1, 3, 5, 7, 9)

Add or remove elements.
Change existing elements.

fruits = ("apple", "banana", "cherry")

fruits[1] = "blueberry" # This will raise a TypeError

4. Concatenation: Combine two tuples using the + operator.

tuple1 = (1, 2, 3)

tuple2 = (4, 5, 6)

combined = tuple1 + tuple2

print(combined) # Output: (1, 2, 3, 4, 5, 6)

(1, 2, 3, 4, 5, 6)

5. Repetition: Repeat a tuple using the * operator.

repeated = (1, 2) * 3

Tuple Methods

Since tuples are immutable, they have fewer methods compared to lists. The most
commonly used methods are:

When to Use Tuples

print(repeated) # Output: (1, 2, 1, 2, 1, 2)

(1, 2, 1, 2, 1, 2)

6. Membership: Check if an element exists in a tuple using the in keyword.

fruits = ("apple", "banana", "cherry")

print("banana" in fruits) # Output: True

print("mango" in fruits) # Output: False

True

False

7. Length: Use the len() function to get the number of elements in a tuple.

print(len(fruits)) # Output: 3

3

8. count() : Returns the number of occurrences of a value.

numbers = (1, 2, 3, 1, 2, 1)

print(numbers.count(1)) # Output: 3

3

9. index() : Returns the index of the first occurrence of a value.

print(numbers.index(2)) # Output: 1

1

Example:

Unpacking Tuples

You can unpack a tuple into multiple variables. This is useful for assigning values from a
tuple to individual variables.

Example:

Example Program

Use tuples when you want to ensure the data remains constant and cannot be modified.
Tuples are faster than lists for fixed data because of their immutability.
Use tuples as keys in dictionaries (since lists cannot be used as keys due to their
mutability).

Using a tuple as a dictionary key

location = {

(40.7128, -74.0060): "New York",

(34.0522, -118.2437): "Los Angeles"

}

print(location[(40.7128, -74.0060)]) # Output: New York

New York

coordinates = (10.0, 20.0)

x, y = coordinates

print("x:", x) # Output: x: 10.0

print("y:", y) # Output: y: 20.0

x: 10.0

y: 20.0

Working with Tuples

fruits = ("apple", "banana", "cherry")

Accessing elements

print("First fruit:", fruits[0])

print("Last fruit:", fruits[-1])

9. Functions
A function is a reusable block of code that performs a specific task. Functions help organize
code, avoid repetition, and make programs easier to read and maintain. In Python, you can
define your own functions using the def keyword.

Defining a Function

To define a function, use the def keyword followed by the function name, parentheses () ,
and a colon : . The code block inside the function is indented.

Slicing

print("First two fruits:", fruits[:2])

Tuple operations

numbers = (1, 2, 3)

repeated = numbers * 2

print("Repeated tuple:", repeated)

Tuple methods

print("Count of 'banana':", fruits.count("banana"))

print("Index of 'cherry':", fruits.index("cherry"))

Unpacking

x, y, z = fruits

print("Unpacked values:", x, y, z)

Using tuples as dictionary keys

location = {

(40.7128, -74.0060): "New York",

(34.0522, -118.2437): "Los Angeles"

}

print("Location:", location[(40.7128, -74.0060)])

First fruit: apple

Last fruit: cherry

First two fruits: ('apple', 'banana')

Repeated tuple: (1, 2, 3, 1, 2, 3)

Count of 'banana': 1

Index of 'cherry': 2

Unpacked values: apple banana cherry

Location: New York

Syntax:

Calling a Function

To use a function, you "call" it by writing its name followed by parentheses () . If the function
has parameters, you pass arguments inside the parentheses.

Example:

Function Parameters and Arguments

Parameters are variables listed in the function definition. Arguments are the actual values
passed to the function when it is called.

Example:

def function_name(parameters):

Code to execute

return result # Optional

function_name : The name of the function (follows the same rules as variable names).
parameters : Inputs to the function (optional). These are variables that the function uses
to perform its task.
return : Specifies the value the function should return (optional). If omitted, the function
returns None .

Define a function

def greet():

print("Hello, World!")

Call the function

greet() # Output: Hello, World!

Hello, World!

Function with parameters

def greet(name):

print(f"Hello, {name}!")

Call the function with an argument

Returning Values

Use the return statement to send a value back to the caller. A function can return any type
of data, including numbers, strings, lists, or even other functions.

Example:

Default Parameters

You can provide default values for parameters. If the caller doesn’t pass an argument for that
parameter, the default value is used.

Example:

greet("Alice") # Output: Hello, Alice!

greet("Bob") # Output: Hello, Bob!

Hello, Alice!

Hello, Bob!

Function that returns a value

def add(a, b):

return a + b

Call the function and store the result

result = add(3, 5)

print(result) # Output: 8

8

If a function doesn’t have a return statement, it implicitly returns None .

def greet(name="Guest"):

print(f"Hello, {name}!")

greet() # Output: Hello, Guest!

greet("Alice") # Output: Hello, Alice!

Hello, Guest!

Hello, Alice!

Keyword Arguments

When calling a function, you can specify arguments by their parameter names. This allows
you to pass arguments in any order.

Example:

Variable-Length Arguments

Sometimes, you may not know how many arguments will be passed to a function. Python
allows you to handle this using:

Example:

def describe_pet(pet_name, animal_type="dog"):

print(f"I have a {animal_type} named {pet_name}.")

Using keyword arguments

describe_pet(pet_name="Max", animal_type="cat") # Output: I have a cat

named Max.

describe_pet(animal_type="hamster", pet_name="Bella") # Output: I have a

hamster named Bella.

I have a cat named Max.

I have a hamster named Bella.

*args : Collects additional positional arguments as a tuple.
`kwargs`**: Collects additional keyword arguments as a dictionary.

Using *args

def add_numbers(*args):

return sum(args)

print(add_numbers(1, 2, 3)) # Output: 6

Using **kwargs

def describe_pet(**kwargs):

for key, value in kwargs.items():

print(f"{key}: {value}")

describe_pet(name="Max", animal_type="dog", age=3)

Output:

name: Max

Scope of Variables

Example:

Lambda Functions

A lambda function is a small, anonymous function defined using the lambda keyword. It
can have any number of arguments but only one expression.

Syntax:

animal_type: dog

age: 3

6

name: Max

animal_type: dog

age: 3

Local Variables: Variables defined inside a function are local to that function and cannot
be accessed outside it.
Global Variables: Variables defined outside all functions are global and can be
accessed anywhere in the program.

x = 10 # Global variable

def my_function():

y = 5 # Local variable

print(x) # Access global variable

print(y) # Access local variable

my_function()

print(x) # Output: 10

print(y) # This will raise an error (y is local to my_function)

10

5

10

lambda arguments: expression

Example:

Example Program

Lambda function to add two numbers

add = lambda a, b: a + b

print(add(3, 5)) # Output: 8

8

Working with Functions

Define a function

def greet(name="Guest"):

print(f"Hello, {name}!")

Call the function

greet() # Output: Hello, Guest!

greet("Alice") # Output: Hello, Alice!

Function with return value

def add(a, b):

return a + b

result = add(3, 5)

print("Sum:", result) # Output: Sum: 8

Function with *args

def multiply(*args):

product = 1

for num in args:

product *= num

return product

print("Product:", multiply(2, 3, 4)) # Output: Product: 24

Lambda function

square = lambda x: x ** 2

print("Square of 5:", square(5)) # Output: Square of 5: 25

Hello, Guest!

Hello, Alice!

Sum: 8

10. Return Statement
The return statement is used in functions to send a value back to the caller. It also
terminates the execution of the function, meaning any code after the return statement will
not be executed.

Purpose of the Return Statement

Syntax

Returning a Single Value

You can return a single value, such as a number, string, or boolean.

Example:

Product: 24

Square of 5: 25

1. Return a Value: The primary purpose of the return statement is to return a value (or
multiple values) from a function to the caller.

2. Exit a Function: The return statement immediately exits the function, even if there is
code after it.

def function_name(parameters):

Code to execute

return value # Value to return

If no value is specified, the function returns None .

def add(a, b):

return a + b

result = add(3, 5)

print(result) # Output: 8

8

Returning Multiple Values

Python allows you to return multiple values from a function by separating them with commas.
These values are returned as a tuple.

Example:

Returning None

If a function does not have a return statement or has a return statement without a value,
it returns None .

Example:

def calculate(a, b):

sum = a + b

difference = a - b

product = a * b

return sum, difference, product

result = calculate(10, 5)

print(result) # Output: (15, 5, 50)

Unpack the returned tuple

sum, difference, product = calculate(10, 5)

print("Sum:", sum) # Output: Sum: 15

print("Difference:", difference) # Output: Difference: 5

print("Product:", product) # Output: Product: 50

(15, 5, 50)

Sum: 15

Difference: 5

Product: 50

def greet(name):

print(f"Hello, {name}!")

result = greet("Alice")

print(result) # Output: None

Hello, Alice!

None

Early Return

You can use the return statement to exit a function early based on a condition.

Example:

Returning Complex Data Types

You can return complex data types like lists, dictionaries, or even other functions.

Example:

Returning Functions

def is_positive(number):

if number > 0:

return True

return False

print(is_positive(10)) # Output: True

print(is_positive(-5)) # Output: False

True

False

Returning a list

def get_even_numbers(limit):

return [x for x in range(limit) if x % 2 == 0]

print(get_even_numbers(10)) # Output: [0, 2, 4, 6, 8]

Returning a dictionary

def create_person(name, age):

return {"name": name, "age": age}

print(create_person("Alice", 25)) # Output: {'name': 'Alice', 'age': 25}

[0, 2, 4, 6, 8]

{'name': 'Alice', 'age': 25}

You can also return a function from another function. This is useful in advanced
programming techniques like closures and decorators.

Example:

Example Program

def create_multiplier(factor):

def multiplier(number):

return number * factor

return multiplier

double = create_multiplier(2)

print(double(5)) # Output: 10

10

Working with the Return Statement

Function to return a single value

def add(a, b):

return a + b

print("Sum:", add(3, 5)) # Output: Sum: 8

Function to return multiple values

def calculate(a, b):

sum = a + b

difference = a - b

product = a * b

return sum, difference, product

sum, difference, product = calculate(10, 5)

print("Sum:", sum) # Output: Sum: 15

print("Difference:", difference) # Output: Difference: 5

print("Product:", product) # Output: Product: 50

Function with early return

def is_positive(number):

if number > 0:

return True

return False

print("Is 10 positive?", is_positive(10)) # Output: Is 10 positive? True

print("Is -5 positive?", is_positive(-5)) # Output: Is -5 positive? False

11. If Statements
If statements are used to make decisions in your code. They allow you to execute a block of
code only if a certain condition is true. If statements are a fundamental part of programming
and are used to control the flow of your program.

Syntax of an If Statement

The basic structure of an if statement is as follows:

Function returning a list

def get_even_numbers(limit):

return [x for x in range(limit) if x % 2 == 0]

print("Even numbers up to 10:", get_even_numbers(10)) # Output: [0, 2, 4,

6, 8]

Function returning a dictionary

def create_person(name, age):

return {"name": name, "age": age}

print("Person:", create_person("Alice", 25)) # Output: {'name': 'Alice',

'age': 25}

Function returning another function

def create_multiplier(factor):

def multiplier(number):

return number * factor

return multiplier

double = create_multiplier(2)

print("Double of 5:", double(5)) # Output: Double of 5: 10

Sum: 8

Sum: 15

Difference: 5

Product: 50

Is 10 positive? True

Is -5 positive? False

Even numbers up to 10: [0, 2, 4, 6, 8]

Person: {'name': 'Alice', 'age': 25}

Double of 5: 10

Example of a Simple If Statement

Adding an Else Clause

The else clause is used to execute a block of code when the if condition is False .

Syntax:

Example:

if condition:

Code to execute if the condition is true

condition : An expression that evaluates to True or False .
Indentation: The code block under the if statement must be indented (usually by 4
spaces).

age = 18

if age >= 18:

print("You are an adult.")

You are an adult.

If age is greater than or equal to 18, the message "You are an adult." will be
printed. Otherwise, nothing happens.

if condition:

Code to execute if the condition is true

else:

Code to execute if the condition is false

age = 15

if age >= 18:

print("You are an adult.")

else:

print("You are a minor.")

Using Elif for Multiple Conditions

The elif (short for "else if") clause is used to check multiple conditions. It is placed
between the if and else clauses.

Syntax:

Example:

Nested If Statements

You can nest if statements inside other if statements to create more complex decision-
making logic.

Example:

You are a minor.

If age is less than 18, the message "You are a minor." will be printed.

if condition1:

Code to execute if condition1 is true

elif condition2:

Code to execute if condition2 is true

else:

Code to execute if all conditions are false

age = 25

if age < 13:

print("You are a child.")

elif age < 18:

print("You are a teenager.")

else:

print("You are an adult.")

You are an adult.

This program checks multiple conditions and prints the appropriate message based on
the value of age .

Logical Operators in If Statements

You can use logical operators (and , or , not) to combine multiple conditions.

age = 20

has_license = True

if age >= 18:

if has_license:

print("You can drive.")

else:

print("You are old enough to drive but don't have a license.")

else:

print("You are too young to drive.")

You can drive.

1. and : Both conditions must be true.

age = 20

has_license = True

if age >= 18 and has_license:

print("You can drive.")

You can drive.

2. or : At least one condition must be true.

age = 16

has_parental_consent = True

if age >= 18 or has_parental_consent:

print("You can participate.")

You can participate.

3. not : Inverts the condition.

is_raining = False

Truthy and Falsy Values

In Python, conditions are evaluated based on whether they are "truthy" or "falsy":

Example:

Example Program

if not is_raining:

print("Let's go outside!")

Let's go outside!

Falsy Values: False , 0 , "" (empty string), None , [] (empty list), {} (empty
dictionary), etc.
Truthy Values: Everything else.

name = ""

if name:

print("Hello, " + name)

else:

print("Name is empty.")

Name is empty.

Since name is an empty string (falsy), the program will print "Name is empty." .

Working with If Statements

Simple If Statement

age = 18

if age >= 18:

print("You are an adult.")

If-Else Statement

age = 15

if age >= 18:

print("You are an adult.")

else:

print("You are a minor.")

12. If Statements & Comparisons
In Python, comparison operators are used to compare values and make decisions in if
statements. These operators evaluate to True or False , which determines whether a block
of code is executed.

If-Elif-Else Statement

age = 25

if age < 13:

print("You are a child.")

elif age < 18:

print("You are a teenager.")

else:

print("You are an adult.")

Nested If Statements

age = 20

has_license = True

if age >= 18:

if has_license:

print("You can drive.")

else:

print("You are old enough to drive but don't have a license.")

else:

print("You are too young to drive.")

Logical Operators

age = 20

has_license = True

if age >= 18 and has_license:

print("You can drive.")

Truthy and Falsy Values

name = ""

if name:

print("Hello, " + name)

else:

print("Name is empty.")

You are an adult.

You are a minor.

You are an adult.

You can drive.

You can drive.

Name is empty.

Comparison Operators

Here are the most commonly used comparison operators:

Operator Description Example Result

== Equal to 5 == 5 True

!= Not equal to 5 != 3 True

> Greater than 10 > 5 True

< Less than 10 < 5 False

>= Greater than or equal to 10 >= 10 True

<= Less than or equal to 10 <= 5 False

Using Comparisons in If Statements

Comparison operators are often used in if statements to make decisions based on the
relationship between values.

Example:

Chaining Comparisons

You can chain multiple comparisons using logical operators (and , or , not) to create more
complex conditions.

Example:

x = 10

y = 5

if x > y:

print("x is greater than y")

else:

print("x is not greater than y")

x is greater than y

Chaining Comparisons

You can chain multiple comparisons using logical operators (and , or , not) to create more
complex conditions.

Example:

Comparing Strings

You can also use comparison operators with strings. Strings are compared lexicographically
(based on their Unicode values).

Example:

x = 10

y = 5

z = 7

if x > y and y < z:

print("x is greater than y, and y is less than z")

x is greater than y, and y is less than z

x = 10

y = 5

z = 7

if x > y and y < z:

print("x is greater than y, and y is less than z")

x is greater than y, and y is less than z

name1 = "Alice"

name2 = "Bob"

if name1 < name2:

print(f"{name1} comes before {name2} in the dictionary.")

else:

print(f"{name1} comes after {name2} in the dictionary.")

Comparing Lists

Lists can also be compared using comparison operators. Python compares lists element by
element.

Example:

Using in and not in for Membership

The in and not in operators are used to check if a value exists (or does not exist) in a
sequence (e.g., list, tuple, string).

Example:

Example Program

Alice comes before Bob in the dictionary.

list1 = [1, 2, 3]

list2 = [1, 2, 4]

if list1 < list2:

print("list1 is less than list2")

list1 is less than list2

fruits = ["apple", "banana", "cherry"]

if "banana" in fruits:

print("Banana is in the list.")

if "mango" not in fruits:

print("Mango is not in the list.")

Banana is in the list.

Mango is not in the list.

Working with If Statements & Comparisons

Comparing numbers

x = 10

y = 5

if x > y:

print("x is greater than y")

else:

print("x is not greater than y")

Chaining comparisons

z = 7

if x > y and y < z:

print("x is greater than y, and y is less than z")

Comparing strings

name1 = "Alice"

name2 = "Bob"

if name1 < name2:

print(f"{name1} comes before {name2} in the dictionary.")

else:

print(f"{name1} comes after {name2} in the dictionary.")

Comparing lists

list1 = [1, 2, 3]

list2 = [1, 2, 4]

if list1 < list2:

print("list1 is less than list2")

Membership testing

fruits = ["apple", "banana", "cherry"]

if "banana" in fruits:

print("Banana is in the list.")

if "mango" not in fruits:

print("Mango is not in the list.")

x is greater than y

x is greater than y, and y is less than z

Alice comes before Bob in the dictionary.

list1 is less than list2

Banana is in the list.

Mango is not in the list.

13. Dictionaries
A dictionary is a collection of key-value pairs. It is an unordered, mutable (changeable), and
indexed data structure. Dictionaries are optimized for retrieving values when the key is
known. Each key in a dictionary must be unique, and it maps to a specific value.

Creating a Dictionary

Dictionaries are created using curly braces {} or the dict() constructor. Each key-value
pair is separated by a colon : , and pairs are separated by commas.

Syntax:

Example:

Accessing Dictionary Values

You can access the value associated with a key using square brackets [] or the get()
method.

Example:

my_dict = {

key1: value1,

key2: value2,

key3: value3

}

Dictionary of person details

person = {

"name": "Alice",

"age": 25,

"city": "New York"

}

Using dict() constructor

person = dict(name="Alice", age=25, city="New York")

person = {

"name": "Alice",

"age": 25,

Adding or Updating Dictionary Entries

You can add a new key-value pair or update an existing one by assigning a value to a key.

Example:

"city": "New York"

}

Accessing values

print(person["name"]) # Output: Alice

print(person.get("age")) # Output: 25

Alice

25

If the key does not exist, using [] will raise a KeyError , while get() will return None
(or a default value you specify).

print(person.get("country", "Unknown")) # Output: Unknown

Unknown

person = {

"name": "Alice",

"age": 25,

"city": "New York"

}

Adding a new key-value pair

person["country"] = "USA"

Updating an existing key

person["age"] = 26

print(person)

Output: {'name': 'Alice', 'age': 26, 'city': 'New York', 'country': 'USA'}

{'name': 'Alice', 'age': 26, 'city': 'New York', 'country': 'USA'}

Removing Dictionary Entries

You can remove a key-value pair using:

Dictionary Methods

Here are some commonly used dictionary methods:

1. del : Deletes the key-value pair.

del person["city"]

print(person) # Output: {'name': 'Alice', 'age': 26, 'country': 'USA'}

{'name': 'Alice', 'age': 26, 'country': 'USA'}

2. pop() : Removes the key-value pair and returns the value.

age = person.pop("age")

print(age) # Output: 26

print(person) # Output: {'name': 'Alice', 'country': 'USA'}

26

{'name': 'Alice', 'country': 'USA'}

3. popitem() : Removes and returns the last inserted key-value pair (Python 3.7+).

last_item = person.popitem()

print(last_item) # Output: ('country', 'USA')

print(person) # Output: {'name': 'Alice'}

('country', 'USA')

{'name': 'Alice'}

4. clear() : Removes all key-value pairs from the dictionary.

person.clear()

print(person) # Output: {}

{}

Iterating Over a Dictionary

You can iterate over a dictionary using a for loop. By default, the loop iterates over the
keys.

1. keys() : Returns a list of all keys in the dictionary.

print(person.keys()) # Output: dict_keys(['name', 'age', 'city'])

dict_keys([])

2. values() : Returns a list of all values in the dictionary.

print(person.values()) # Output: dict_values(['Alice', 25, 'New York'])

dict_values([])

3. items() : Returns a list of key-value pairs as tuples.

print(person.items()) # Output: dict_items([('name', 'Alice'), ('age',

25), ('city', 'New York')])

dict_items([])

4. update() : Merges another dictionary into the current one.

person.update({"country": "USA", "age": 26})

print(person) # Output: {'name': 'Alice', 'age': 26, 'city': 'New York',

'country': 'USA'}

{'country': 'USA', 'age': 26}

5. copy() : Returns a shallow copy of the dictionary.

person_copy = person.copy()

print(person_copy)

{'country': 'USA', 'age': 26}

Example:

Dictionary Comprehensions

Similar to list comprehensions, dictionary comprehensions allow you to create dictionaries in
a concise way.

Syntax:

Example:

person = {

"name": "Alice",

"age": 25,

"city": "New York"

}

Iterate over keys

for key in person:

print(key)

Iterate over values

for value in person.values():

print(value)

Iterate over key-value pairs

for key, value in person.items():

print(f"{key}: {value}")

name

age

city

Alice

25

New York

name: Alice

age: 25

city: New York

{key_expression: value_expression for item in iterable}

Create a dictionary of squares

squares = {x: x ** 2 for x in range(1, 6)}

print(squares) # Output: {1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

Nested Dictionaries

Dictionaries can contain other dictionaries, allowing you to create complex data structures.

Example:

Example Program

{1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

students = {

"Alice": {"age": 25, "grade": "A"},

"Bob": {"age": 22, "grade": "B"},

"Charlie": {"age": 23, "grade": "C"}

}

Accessing nested dictionary values

print(students["Alice"]["age"]) # Output: 25

25

Working with Dictionaries

Creating a dictionary

person = {

"name": "Alice",

"age": 25,

"city": "New York"

}

Accessing values

print("Name:", person["name"])

print("Age:", person.get("age"))

Adding/updating entries

person["country"] = "USA"

person["age"] = 26

Removing entries

del person["city"]

age = person.pop("age")

last_item = person.popitem()

14. While Loop
A while loop is used to repeatedly execute a block of code as long as a condition is True . It
is useful when you don’t know in advance how many times the loop needs to run.

Syntax of a While Loop

Dictionary methods

print("Keys:", person.keys())

print("Values:", person.values())

print("Items:", person.items())

Iterating over a dictionary

for key, value in person.items():

print(f"{key}: {value}")

Dictionary comprehension

squares = {x: x ** 2 for x in range(1, 6)}

print("Squares:", squares)

Nested dictionaries

students = {

"Alice": {"age": 25, "grade": "A"},

"Bob": {"age": 22, "grade": "B"},

"Charlie": {"age": 23, "grade": "C"}

}

print("Alice's age:", students["Alice"]["age"])

Name: Alice

Age: 25

Keys: dict_keys(['name'])

Values: dict_values(['Alice'])

Items: dict_items([('name', 'Alice')])

name: Alice

Squares: {1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

Alice's age: 25

while condition:

Code to execute

Example of a Simple While Loop

Infinite While Loop

If the condition of a while loop is always True , the loop will run indefinitely. This is called
an infinite loop.

Example:

Breaking Out of a While Loop

You can use the break statement to exit a loop prematurely, even if the condition is still
True .

condition : An expression that evaluates to True or False . The loop continues as
long as the condition is True .
Indentation: The code block under the while statement must be indented (usually by 4
spaces).

count = 0

while count < 5:

print("Count:", count)

count += 1 # Increment count

Count: 0

Count: 1

Count: 2

Count: 3

Count: 4

The loop runs as long as count < 5 is True . Once count reaches 5, the condition
becomes False , and the loop stops.

while True:

print("This is an infinite loop!")

To stop an infinite loop, you can use Ctrl+C in the terminal or add a break statement
(explained later).

Example:

Skipping Iterations with Continue

The continue statement skips the rest of the code in the current iteration and moves to the
next iteration of the loop.

Example:

While Loop with Else

count = 0

while True:

print("Count:", count)

count += 1

if count >= 5:

break # Exit the loop

Count: 0

Count: 1

Count: 2

Count: 3

Count: 4

count = 0

while count < 5:

count += 1

if count == 3:

continue # Skip the rest of the code for this iteration

print("Count:", count)

Count: 1

Count: 2

Count: 4

Count: 5

When count is 3, the continue statement skips the print() statement.

You can add an else block to a while loop. The else block executes when the loop
condition becomes False . However, if the loop is exited using a break statement, the
else block is skipped.

Example:

Nested While Loops

You can nest while loops inside other while loops to create more complex logic.

Example:

count = 0

while count < 5:

print("Count:", count)

count += 1

else:

print("Loop finished!")

Count: 0

Count: 1

Count: 2

Count: 3

Count: 4

Loop finished!

i = 1

while i <= 3:

j = 1

while j <= 3:

print(f"i: {i}, j: {j}")

j += 1

i += 1

i: 1, j: 1

i: 1, j: 2

i: 1, j: 3

i: 2, j: 1

i: 2, j: 2

i: 2, j: 3

i: 3, j: 1

Practical Example: Guessing Game

Here’s a simple guessing game using a while loop:

Example Program

i: 3, j: 2

i: 3, j: 3

secret_number = 7

guess = None

while guess != secret_number:

guess = int(input("Guess the secret number (between 1 and 10): "))

if guess < secret_number:

print("Too low!")

elif guess > secret_number:

print("Too high!")

else:

print("Congratulations! You guessed it!")

Guess the secret number (between 1 and 10): 5

Too low!

Guess the secret number (between 1 and 10): 9

Too high!

Guess the secret number (between 1 and 10): 7

Congratulations! You guessed it!

Working with While Loops

Simple While Loop

count = 0

while count < 5:

print("Count:", count)

count += 1

Infinite While Loop with Break

count = 0

while True:

print("Count:", count)

count += 1

if count >= 5:

break

While Loop with Continue

count = 0

while count < 5:

count += 1

if count == 3:

continue

print("Count:", count)

While Loop with Else

count = 0

while count < 5:

print("Count:", count)

count += 1

else:

print("Loop finished!")

Nested While Loops

i = 1

while i <= 3:

j = 1

while j <= 3:

print(f"i: {i}, j: {j}")

j += 1

i += 1

Guessing Game

secret_number = 7

guess = None

while guess != secret_number:

guess = int(input("Guess the secret number (between 1 and 10): "))

if guess < secret_number:

print("Too low!")

elif guess > secret_number:

print("Too high!")

else:

print("Congratulations! You guessed it!")

16. For Loops
A for loop is used to iterate over a sequence (such as a list, tuple, string, or range) and
execute a block of code for each item in the sequence. For loops are commonly used when
you know in advance how many times you want to repeat a task.

Syntax of a For Loop

Iterating Over a List

You can use a for loop to iterate over a list and perform an action for each item.

Example:

Iterating Over a String

A string is a sequence of characters, so you can iterate over each character in a string.

Example:

for item in sequence:

Code to execute

item : A variable that takes the value of each element in the sequence during each
iteration.
sequence : A collection of items (e.g., list, tuple, string, or range).
Indentation: The code block under the for statement must be indented (usually by 4
spaces).

fruits = ["apple", "banana", "cherry"]

for fruit in fruits:

print(fruit)

apple

banana

cherry

Using the range() Function

The range() function generates a sequence of numbers, which is often used in for loops.

Syntax:

Examples:

message = "Hello"

for char in message:

print(char)

H

e

l

l

o

range(start, stop, step)

start : The starting value (inclusive). Default is 0 .
stop : The ending value (exclusive).
step : The increment between numbers. Default is 1 .

1. Iterate over a range of numbers:

for i in range(5):

print(i)

0

1

2

3

4

2. Specify a start and stop:

for i in range(2, 6):

print(i)

Nested For Loops

You can nest for loops inside other for loops to create more complex logic.

Example:

Breaking Out of a For Loop

You can use the break statement to exit a for loop prematurely.

Example:

2

3

4

5

3. Specify a step:

for i in range(1, 10, 2):

print(i)

1

3

5

7

9

for i in range(3):

for j in range(3):

print(f"i: {i}, j: {j}")

i: 0, j: 0

i: 0, j: 1

i: 0, j: 2

i: 1, j: 0

i: 1, j: 1

i: 1, j: 2

i: 2, j: 0

i: 2, j: 1

i: 2, j: 2

Skipping Iterations with Continue

The continue statement skips the rest of the code in the current iteration and moves to the
next iteration.

Example:

For Loop with Else

You can add an else block to a for loop. The else block executes when the loop finishes
normally (i.e., without a break statement).

Example:

for i in range(10):

if i == 5:

break # Exit the loop

print(i)

0

1

2

3

4

for i in range(5):

if i == 2:

continue # Skip the rest of the code for this iteration

print(i)

0

1

3

4

for i in range(3):

print(i)

else:

print("Loop finished!")

Practical Example: Summing Numbers

Here’s an example of using a for loop to calculate the sum of numbers in a list:

Example Program

0

1

2

Loop finished!

numbers = [1, 2, 3, 4, 5]

total = 0

for num in numbers:

total += num

print("Sum:", total)

Sum: 15

Working with For Loops

Iterating over a list

fruits = ["apple", "banana", "cherry"]

for fruit in fruits:

print(fruit)

Iterating over a string

message = "Hello"

for char in message:

print(char)

Using range()

for i in range(5):

print(i)

for i in range(2, 6):

print(i)

for i in range(1, 10, 2):

print(i)

17. Exponent Function
The exponent function is used to raise a number to a specified power. In Python, you can
calculate exponents using the ** operator or the built-in pow() function. Additionally, the
math module provides more advanced exponentiation capabilities.

Using the `` Operator**

The ** operator is the simplest way to calculate exponents in Python.

Syntax:

Nested For Loops

for i in range(3):

for j in range(3):

print(f"i: {i}, j: {j}")

Breaking out of a loop

for i in range(10):

if i == 5:

break

print(i)

Skipping iterations with continue

for i in range(5):

if i == 2:

continue

print(i)

For Loop with Else

for i in range(3):

print(i)

else:

print("Loop finished!")

Summing numbers in a list

numbers = [1, 2, 3, 4, 5]

total = 0

for num in numbers:

total += num

print("Sum:", total)

Examples:

Using the pow() Function

The pow() function is a built-in function that calculates the power of a number. It takes two
arguments: the base and the exponent.

Syntax:

Examples:

Using the math.pow() Function

base ** exponent

Calculate 2 raised to the power of 3

result = 2 ** 3

print(result) # Output: 8

Calculate 5 raised to the power of 2

result = 5 ** 2

print(result) # Output: 25

8

25

pow(base, exponent)

Calculate 2 raised to the power of 3

result = pow(2, 3)

print(result) # Output: 8

Calculate 5 raised to the power of 2

result = pow(5, 2)

print(result) # Output: 25

8

25

The math module provides a pow() function that works similarly to the built-in pow()
function but always returns a float.

Syntax:

Steps:

Example:

Handling Negative Exponents

You can use negative exponents to calculate the reciprocal of a number raised to a power.

Examples:

math.pow(base, exponent)

1. Import the math module.
2. Use math.pow() to calculate the exponent.

import math

Calculate 2 raised to the power of 3

result = math.pow(2, 3)

print(result) # Output: 8.0

Calculate 5 raised to the power of 2

result = math.pow(5, 2)

print(result) # Output: 25.0

8.0

25.0

Calculate 2 raised to the power of -3

result = 2 ** -3

print(result) # Output: 0.125

Calculate 5 raised to the power of -2

result = pow(5, -2)

print(result) # Output: 0.04

0.125

0.04

Handling Fractional Exponents

Fractional exponents allow you to calculate roots. For example, raising a number to the
power of 1/2 calculates its square root.

Examples:

Practical Example: Custom Exponent Function

You can create a custom function to calculate exponents. This is useful if you want to add
additional logic or error handling.

Example:

Example Program

Calculate the square root of 16

result = 16 ** 0.5

print(result) # Output: 4.0

Calculate the cube root of 27

result = 27 ** (1/3)

print(result) # Output: 3.0

4.0

3.0

def exponent(base, power):

return base ** power

Calculate 2 raised to the power of 3

result = exponent(2, 3)

print(result) # Output: 8

8

Working with Exponent Functions

Using the ** operator

result = 2 ** 3

print("2 ** 3 =", result) # Output: 8

result = 5 ** 2

print("5 ** 2 =", result) # Output: 25

Using the pow() function

result = pow(2, 3)

print("pow(2, 3) =", result) # Output: 8

result = pow(5, 2)

print("pow(5, 2) =", result) # Output: 25

Using math.pow()

import math

result = math.pow(2, 3)

print("math.pow(2, 3) =", result) # Output: 8.0

result = math.pow(5, 2)

print("math.pow(5, 2) =", result) # Output: 25.0

Handling negative exponents

result = 2 ** -3

print("2 ** -3 =", result) # Output: 0.125

result = pow(5, -2)

print("pow(5, -2) =", result) # Output: 0.04

Handling fractional exponents

result = 16 ** 0.5

print("16 ** 0.5 =", result) # Output: 4.0

result = 27 ** (1/3)

print("27 ** (1/3) =", result) # Output: 3.0

Custom exponent function

def exponent(base, power):

return base ** power

result = exponent(2, 3)

print("exponent(2, 3) =", result) # Output: 8

2 ** 3 = 8

5 ** 2 = 25

pow(2, 3) = 8

pow(5, 2) = 25

math.pow(2, 3) = 8.0

math.pow(5, 2) = 25.0

2 ** -3 = 0.125

18. 2D Lists & Nested Loops
A 2D list (or list of lists) is a list where each element is itself a list. This is often used to
represent grids, matrices, or tables. To work with 2D lists, you typically use nested loops—a
loop inside another loop—to iterate over the rows and columns.

Creating a 2D List

You can create a 2D list by nesting lists inside another list.

Example:

Accessing Elements in a 2D List

To access an element in a 2D list, use two indices: the first for the row and the second for
the column.

Syntax:

Example:

pow(5, -2) = 0.04

16 ** 0.5 = 4.0

27 ** (1/3) = 3.0

exponent(2, 3) = 8

A 2D list representing a 3x3 grid

matrix = [

[1, 2, 3],

[4, 5, 6],

[7, 8, 9]

]

matrix[row][column]

matrix = [

[1, 2, 3],

[4, 5, 6],

[7, 8, 9]

]

Iterating Over a 2D List Using Nested Loops

To iterate over all elements in a 2D list, use a nested loop:

Example:

Modifying a 2D List

You can modify elements in a 2D list using their indices.

Example:

Access the element in the second row, third column

print(matrix[1][2]) # Output: 6

6

The outer loop iterates over the rows.
The inner loop iterates over the columns.

matrix = [

[1, 2, 3],

[4, 5, 6],

[7, 8, 9]

]

for row in matrix:

for element in row:

print(element, end=" ") # Print elements in the same row

print() # Move to the next line after each row

1 2 3

4 5 6

7 8 9

matrix = [

[1, 2, 3],

[4, 5, 6],

[7, 8, 9]

]

Creating a 2D List Using List Comprehension

You can use list comprehension to create a 2D list in a concise way.

Example:

Practical Example: Matrix Addition

Here’s an example of adding two 2D lists (matrices) element-wise:

Change the element in the first row, second column

matrix[0][1] = 10

print(matrix)

Output: [[1, 10, 3], [4, 5, 6], [7, 8, 9]]

[[1, 10, 3], [4, 5, 6], [7, 8, 9]]

Create a 3x3 matrix with all elements set to 0

matrix = [[0 for _ in range(3)] for _ in range(3)]

print(matrix)

Output: [[0, 0, 0], [0, 0, 0], [0, 0, 0]]

[[0, 0, 0], [0, 0, 0], [0, 0, 0]]

Define two 2x2 matrices

matrix1 = [

[1, 2],

[3, 4]

]

matrix2 = [

[5, 6],

[7, 8]

]

Create a result matrix with the same dimensions

result = [[0 for _ in range(2)] for _ in range(2)]

Perform matrix addition

for i in range(2): # Iterate over rows

for j in range(2): # Iterate over columns

Example Program

result[i][j] = matrix1[i][j] + matrix2[i][j]

print(result)

Output: [[6, 8], [10, 12]]

[[6, 8], [10, 12]]

Working with 2D Lists & Nested Loops

Creating a 2D list

matrix = [

[1, 2, 3],

[4, 5, 6],

[7, 8, 9]

]

Accessing elements

print("Element at row 1, column 2:", matrix[1][2]) # Output: 6

Iterating over a 2D list

print("Matrix elements:")

for row in matrix:

for element in row:

print(element, end=" ")

print()

Modifying a 2D list

matrix[0][1] = 10

print("Modified matrix:")

for row in matrix:

for element in row:

print(element, end=" ")

print()

Creating a 2D list using list comprehension

matrix2 = [[0 for _ in range(3)] for _ in range(3)]

print("2D list created using list comprehension:")

for row in matrix2:

for element in row:

print(element, end=" ")

print()

Matrix addition

19. Comments
Comments are notes or explanations added to your code to make it easier to understand.
They are ignored by the Python interpreter and are only meant for humans (developers,
collaborators, or your future self). Comments are essential for writing clean, maintainable,
and readable code.

matrix1 = [

[1, 2],

[3, 4]

]

matrix2 = [

[5, 6],

[7, 8]

]

result = [[0 for _ in range(2)] for _ in range(2)]

for i in range(2):

for j in range(2):

result[i][j] = matrix1[i][j] + matrix2[i][j]

print("Result of matrix addition:")

for row in result:

for element in row:

print(element, end=" ")

print()

Element at row 1, column 2: 6

Matrix elements:

1 2 3

4 5 6

7 8 9

Modified matrix:

1 10 3

4 5 6

7 8 9

2D list created using list comprehension:

0 0 0

0 0 0

0 0 0

Result of matrix addition:

6 8

10 12

Types of Comments

Python supports two types of comments:

Single-Line Comments

Single-line comments start with the # symbol. Everything after # on that line is ignored by
the Python interpreter.

Syntax:

Example:

Multi-Line Comments

Python doesn’t have a specific syntax for multi-line comments. However, you can use multi-
line strings (enclosed in triple quotes ''' or """) to create block comments. These are not
technically comments but are treated as strings and ignored if not assigned to a variable.

Syntax:

Example:

1. Single-line comments: Used for short explanations or notes.
2. Multi-line comments: Used for longer descriptions or documentation.

This is a single-line comment

Calculate the sum of two numbers

a = 5

b = 10

sum = a + b # Store the result in the variable 'sum'

print(sum)

15

"""

This is a multi-line comment.

It can span multiple lines.

"""

Best Practices for Using Comments

Inline Comments

Inline comments are placed on the same line as the code. They should be used sparingly
and only to clarify complex or non-obvious code.

Example:

"""

This program calculates the area of a rectangle.

It takes the length and width as input and prints the area.

"""

length = 10

width = 5

area = length * width

print("Area:", area)

Area: 50

1. Explain Why, Not What: Comments should explain why the code is written a certain
way, not what the code does (unless the code is complex or non-obvious).

Bad: This adds 5 and 10

sum = 5 + 10

Good: Calculate the total cost including tax

total_cost = price + (price * tax_rate)

2. Keep Comments Up-to-Date: If you change the code, make sure to update the
comments to reflect the changes.

3. Avoid Over-Commenting: Don’t add comments for every line of code. Only comment
when necessary to clarify complex logic or decisions.

4. Use Comments for TODOs: Use comments to mark areas of the code that need
improvement or additional work.

TODO: Optimize this function for better performance

def calculate_sum(numbers):

return sum(numbers)

Docstrings

Docstrings are a special type of multi-line comment used to document functions, classes,
and modules. They are enclosed in triple quotes and are accessible at runtime using the
__doc__ attribute.

Example:

Example Program

x = 10 # Initialize x with a value of 10

def add(a, b):

"""

This function adds two numbers and returns the result.

Parameters:

a (int): The first number.

b (int): The second number.

Returns:

int: The sum of a and b.

"""

return a + b

Access the docstring

print(add.__doc__)

This function adds two numbers and returns the result.

Parameters:

a (int): The first number.

b (int): The second number.

Returns:

int: The sum of a and b.

Working with Comments

Single-line comment

This program calculates the area of a rectangle

Multi-line comment

"""

This program takes the length and width of a rectangle as input,

calculates the area, and prints the result.

"""

Variables

length = 10 # Length of the rectangle

width = 5 # Width of the rectangle

Calculate area

area = length * width # Area = length * width

Print the result

print("Area:", area)

Function with a docstring

def multiply(a, b):

"""

This function multiplies two numbers and returns the result.

Parameters:

a (int): The first number.

b (int): The second number.

Returns:

int: The product of a and b.

"""

return a * b

Access the docstring

print(multiply.__doc__)

Area: 50

This function multiplies two numbers and returns the result.

Parameters:

a (int): The first number.

b (int): The second number.

Returns:

int: The product of a and b.

20. Try / Except
The try/except block is used in Python to handle exceptions (errors) that occur during the
execution of a program. Instead of crashing the program, you can catch and handle
exceptions gracefully, allowing the program to continue running or provide meaningful
feedback to the user.

What Are Exceptions?

Exceptions are errors that occur during the execution of a program. Examples include:

Syntax of Try/Except

The basic structure of a try/except block is as follows:

Handling Specific Exceptions

You can specify the type of exception to catch in the except block. This allows you to
handle different exceptions differently.

Example:

ZeroDivisionError : Division by zero.
TypeError : Performing an operation on incompatible types.
ValueError : Passing an invalid value to a function.
FileNotFoundError : Trying to open a file that doesn’t exist.

try:

Code that might raise an exception

except ExceptionType:

Code to handle the exception

try block: Contains the code that might raise an exception.
except block: Contains the code to handle the exception if it occurs.

try:

num = int(input("Enter a number: "))

result = 10 / num

print("Result:", result)

except ZeroDivisionError:

Handling Multiple Exceptions in One Block

You can handle multiple exceptions in a single except block by specifying them as a tuple.

Example:

Using a Generic Exception

You can use a generic except block to catch all exceptions. However, this is generally not
recommended because it can hide unexpected errors.

Example:

print("Error: Cannot divide by zero.")

except ValueError:

print("Error: Invalid input. Please enter a number.")

Enter a number: 0

Error: Cannot divide by zero.

If the user enters 0 , the program will catch the ZeroDivisionError and print "Error:
Cannot divide by zero."

If the user enters a non-numeric value, the program will catch the ValueError and print
"Error: Invalid input. Please enter a number."

try:

num = int(input("Enter a number: "))

result = 10 / num

print("Result:", result)

except (ZeroDivisionError, ValueError):

print("Error: Invalid input or division by zero.")

Enter a number: a

Error: Invalid input or division by zero.

try:

num = int(input("Enter a number: "))

The Else Block

The else block is executed if no exceptions occur in the try block. It is useful for code that
should only run if the try block succeeds.

Example:

The Finally Block

The finally block is executed no matter what—whether an exception occurs or not. It is
typically used for cleanup actions, such as closing files or releasing resources.

Example:

result = 10 / num

print("Result:", result)

except:

print("An error occurred.")

Enter a number: 0

An error occurred.

try:

num = int(input("Enter a number: "))

result = 10 / num

except ZeroDivisionError:

print("Error: Cannot divide by zero.")

except ValueError:

print("Error: Invalid input. Please enter a number.")

else:

print("Result:", result)

Enter a number: 0

Error: Cannot divide by zero.

try:

file = open("example.txt", "r")

content = file.read()

Raising Exceptions

You can raise exceptions manually using the raise keyword. This is useful for enforcing
constraints or signaling errors in your code.

Example:

Custom Exceptions

You can define your own exceptions by creating a new class that inherits from Python’s built-
in Exception class.

Example:

print(content)

except FileNotFoundError:

print("Error: File not found.")

finally:

file.close()

print("File closed.")

File closed.

def divide(a, b):

if b == 0:

raise ValueError("Cannot divide by zero.")

return a / b

try:

result = divide(10, 0)

except ValueError as e:

print(e) # Output: Cannot divide by zero.

Cannot divide by zero.

class NegativeNumberError(Exception):

pass

def check_positive(number):

if number < 0:

raise NegativeNumberError("Negative numbers are not allowed.")

Example Program

try:

check_positive(-5)

except NegativeNumberError as e:

print(e) # Output: Negative numbers are not allowed.

Negative numbers are not allowed.

Working with Try/Except

Handling specific exceptions

try:

num = int(input("Enter a number: "))

result = 10 / num

print("Result:", result)

except ZeroDivisionError:

print("Error: Cannot divide by zero.")

except ValueError:

print("Error: Invalid input. Please enter a number.")

Using else and finally

try:

file = open("example.txt", "r")

content = file.read()

print(content)

except FileNotFoundError:

print("Error: File not found.")

else:

print("File read successfully.")

finally:

file.close()

print("File closed.")

Raising exceptions

def divide(a, b):

if b == 0:

raise ValueError("Cannot divide by zero.")

return a / b

try:

result = divide(10, 0)

except ValueError as e:

print(e)

21. Reading Files
Reading files is a common task in programming. Python provides built-in functions to open,
read, and manipulate files. Files can contain text, data, or any other information, and reading
them allows you to process their contents in your program.

Opening a File

To read a file, you first need to open it using the open() function. The open() function
returns a file object, which provides methods for reading and manipulating the file.

Syntax:

Example:

Custom exceptions

class NegativeNumberError(Exception):

pass

def check_positive(number):

if number < 0:

raise NegativeNumberError("Negative numbers are not allowed.")

try:

check_positive(-5)

except NegativeNumberError as e:

print(e)

Enter a number: 0

Error: Cannot divide by zero.

File read successfully.

File closed.

Cannot divide by zero.

Negative numbers are not allowed.

file = open("filename", "mode")

filename : The name of the file (including the path if necessary).
mode : The mode in which the file is opened. For reading, use "r" (read mode).

Reading the Entire File

You can read the entire contents of a file using the read() method.

Example:

Reading Line by Line

You can read a file line by line using the readline() method or iterate over the file object
directly.

file = open("example.txt", "r")

file = open("example.txt", "r")

content = file.read()

print(content)

file.close()

Hello from the file

this is the example file for working with files in the python

read() : Reads the entire file as a single string.
close() : Closes the file to free up system resources.

1. Using readline() :

file = open("example.txt", "r")

line = file.readline()

while line:

print(line, end="") # end="" prevents extra newlines

line = file.readline()

file.close()

Hello from the file

this is the example file for working with files in the python

2. Using a for loop:

file = open("example.txt", "r")

for line in file:

Reading All Lines into a List

You can read all lines of a file into a list using the readlines() method.

Example:

Using with for File Handling

The with statement is the recommended way to work with files. It automatically closes the
file when the block inside with is exited, even if an exception occurs.

Syntax:

Example:

print(line, end="")

file.close()

Hello from the file

this is the example file for working with files in the python

file = open("example.txt", "r")

lines = file.readlines()

for line in lines:

print(line, end="")

file.close()

Hello from the file

this is the example file for working with files in the python

readlines() : Returns a list where each element is a line from the file.

with open("filename", "mode") as file:

Code to work with the file

with open("example.txt", "r") as file:

content = file.read()

print(content)

Handling File Not Found Errors

If the file does not exist, Python will raise a FileNotFoundError . You can handle this using
a try/except block.

Example:

Reading Specific Parts of a File

You can read a specific number of characters from a file using the read(size) method,
where size is the number of characters to read.

Example:

Example Program

Hello from the file

this is the example file for working with files in the python

No need to call close() explicitly—it’s handled automatically.

try:

with open("example.txt", "r") as file:

content = file.read()

print(content)

except FileNotFoundError:

print("Error: File not found.")

Hello from the file

this is the example file for working with files in the python

with open("example.txt", "r") as file:

first_10_chars = file.read(10)

print(first_10_chars)

Hello from

Working with Reading Files

Reading the entire file

with open("example.txt", "r") as file:

content = file.read()

print("Entire file content:")

print(content)

Reading line by line

with open("example.txt", "r") as file:

print("\nFile content line by line:")

for line in file:

print(line, end="")

Reading all lines into a list

with open("example.txt", "r") as file:

lines = file.readlines()

print("\nFile content as a list of lines:")

for line in lines:

print(line, end="")

Handling file not found errors

try:

with open("nonexistent.txt", "r") as file:

content = file.read()

print(content)

except FileNotFoundError:

print("\nError: File not found.")

Reading specific parts of a file

with open("example.txt", "r") as file:

first_10_chars = file.read(10)

print("\nFirst 10 characters of the file:")

print(first_10_chars)

Entire file content:

Hello from the file

this is the example file for working with files in the python

File content line by line:

Hello from the file

this is the example file for working with files in the python

File content as a list of lines:

Hello from the file

this is the example file for working with files in the python

22. Writing to Files
Writing to files is a common task in programming. Python provides built-in functions to open,
write, and manipulate files. You can create new files, overwrite existing files, or append to
existing files.

Opening a File for Writing

To write to a file, you need to open it in write mode ("w") or append mode ("a"). The
open() function returns a file object, which provides methods for writing to the file.

Syntax:

Example:

Writing to a File

You can write to a file using the write() method. This method writes a string to the file.

Example:

Error: File not found.

First 10 characters of the file:

Hello from

file = open("filename", "mode")

filename : The name of the file (including the path if necessary).
mode :

"w" : Write mode (overwrites the file if it exists or creates a new file if it doesn’t).
"a" : Append mode (adds to the end of the file if it exists or creates a new file if it
doesn’t).

file = open("example.txt", "w")

file = open("example.txt", "w")

file.write("Hello, World!\n")

file.write("This is a new line.")

Appending to a File

To add content to the end of a file without overwriting it, open the file in append mode ("a").

Example:

Using with for File Handling

The with statement is the recommended way to work with files. It automatically closes the
file when the block inside with is exited, even if an exception occurs.

Syntax:

file.close()

Read file content

with open("example.txt", "r") as file:

content = file.read()

print(content)

Hello, World!

This is a new line.

write() : Writes a string to the file.
close() : Closes the file to free up system resources.

file = open("example.txt", "a")

file.write("\nThis line is appended.")

file.close()

Read file content

with open("example.txt", "r") as file:

content = file.read()

print(content)

Hello, World!

This is a new line.

This line is appended.

with open("filename", "mode") as file:

Code to work with the file

Example:

Writing Multiple Lines

You can write multiple lines to a file using the writelines() method. This method takes a
list of strings and writes them to the file.

Example:

Handling File Errors

If there’s an issue with the file (e.g., permission errors), Python will raise an exception. You
can handle these errors using a try/except block.

Example:

with open("example.txt", "w") as file:

file.write("Hello, World!\n")

file.write("This is a new line.")

Read file content

with open("example.txt", "r") as file:

content = file.read()

print(content)

Hello, World!

This is a new line.

lines = ["Line 1\n", "Line 2\n", "Line 3\n"]

with open("example.txt", "w") as file:

file.writelines(lines)

Read file content

with open("example.txt", "r") as file:

content = file.read()

print(content)

Line 1

Line 2

Line 3

Example Program

try:

with open("test.txt", "w") as file:

file.write("Hello, World!")

except IOError:

print("Error: Could not write to the file.")

Error: Could not write to the file.

Working with Writing Files

Writing to a new file

with open("example.txt", "w") as file:

file.write("Hello, World!\n")

file.write("This is a new line.")

Appending to an existing file

with open("example.txt", "a") as file:

file.write("\nThis line is appended.")

Writing multiple lines

lines = ["Line 1\n", "Line 2\n", "Line 3\n"]

with open("example.txt", "w") as file:

file.writelines(lines)

Handling file errors

try:

with open("example.txt", "w") as file:

file.write("Hello, World!")

except IOError:

print("Error: Could not write to the file.")

Reading the file to verify its contents

with open("example.txt", "r") as file:

content = file.read()

print("File content:")

print(content)

File content:

Hello, World!

23. Modules & Pip
Modules and pip are essential tools in Python for organizing code and managing external
libraries. Modules allow you to reuse code across multiple programs, while pip is the
package installer for Python, enabling you to install and manage third-party libraries.

What Are Modules?

A module is a file containing Python code (functions, classes, or variables) that can be
imported and used in other programs. Modules help you organize your code into reusable
components.

Creating a Module

To create a module, simply save your Python code in a .py file. For example, save the
following code in a file named mymodule.py :

Importing a Module

You can import a module using the import statement. Once imported, you can access its
functions, classes, or variables using the dot notation.

Example:

mymodule.py

def greet(name):

return f"Hello, {name}!"

def add(a, b):

return a + b

import mymodule

Using functions from the module

print(mymodule.greet("Alice")) # Output: Hello, Alice!

print(mymodule.add(3, 5)) # Output: 8

Hello, Alice!

8

Importing Specific Functions

You can import specific functions or variables from a module using the from ... import
statement.

Example:

Renaming Imports

You can rename a module or function when importing it using the as keyword.

Example:

Standard Library Modules

Python comes with a rich set of built-in modules, known as the Standard Library. These
modules provide functionality for tasks like math, file handling, and working with dates.

Example:

from mymodule import greet, add

Using the imported functions

print(greet("Bob")) # Output: Hello, Bob!

print(add(2, 4)) # Output: 6

Hello, Bob!

6

import mymodule as mm

print(mm.greet("Charlie")) # Output: Hello, Charlie!

Hello, Charlie!

import math

print(math.sqrt(16)) # Output: 4.0

What is Pip?

Pip is the package installer for Python. It allows you to install, upgrade, and manage third-
party libraries and packages from the Python Package Index (PyPI).

Installing Packages with Pip

To install a package, use the following command in your terminal or command prompt:

Example:

Using Installed Packages

Once a package is installed, you can import and use it in your Python programs.

Example:

Listing Installed Packages

To see a list of installed packages, use the following command:

4.0

pip install package_name

pip install requests

import requests

response = requests.get("https://www.example.com")

print(response.status_code) # Output: 200 (if the request is successful)

200

pip list

Upgrading Packages

To upgrade an installed package to the latest version, use:

Example:

Uninstalling Packages

To uninstall a package, use:

Example:

Creating a Requirements File

A requirements.txt file lists all the dependencies for a project. You can generate this file
using:

To install all dependencies from a requirements.txt file, use:

Example Program

pip install --upgrade package_name

pip install --upgrade requests

pip uninstall package_name

pip uninstall requests

pip freeze > requirements.txt

pip install -r requirements.txt

Working with Modules & Pip

Importing a custom module

24. Classes & Objects
Classes and objects are the foundation of object-oriented programming (OOP) in
Python. A class is a blueprint for creating objects, and an object is an instance of a class.
OOP allows you to structure your code in a way that models real-world entities and their
relationships.

What is a Class?

import mymodule

print(mymodule.greet("Alice")) # Output: Hello, Alice!

print(mymodule.add(3, 5)) # Output: 8

Importing specific functions

from mymodule import greet, add

print(greet("Bob")) # Output: Hello, Bob!

print(add(2, 4)) # Output: 6

Renaming imports

import mymodule as mm

print(mm.greet("Charlie")) # Output: Hello, Charlie!

Using a standard library module

import math

print(math.sqrt(16)) # Output: 4.0

Using an installed package (e.g., requests)

import requests

response = requests.get("https://www.example.com")

print(response.status_code) # Output: 200 (if the request is successful)

Hello, Alice!

8

Hello, Bob!

6

Hello, Charlie!

4.0

200

A class is a template or blueprint that defines the properties (attributes) and behaviors
(methods) of objects. It encapsulates data and functionality into a single unit.

Defining a Class

To define a class, use the class keyword followed by the class name. By convention, class
names are written in CamelCase.

Syntax:

Example:

What is an Object?

An object is an instance of a class. You can create multiple objects from a single class, each
with its own unique attributes.

Creating Objects

To create an object, call the class name as if it were a function. This invokes the __init__
method (constructor) to initialize the object.

Example:

class ClassName:

Class attributes and methods

class Dog:

Class attribute (shared by all instances)

species = "Canis familiaris"

Constructor method (initializes object attributes)

def __init__(self, name, age):

self.name = name # Instance attribute

self.age = age # Instance attribute

Instance method

def bark(self):

return f"{self.name} says woof!"

The self Parameter

The self parameter refers to the current instance of the class. It is used to access instance
attributes and methods within the class.

Class Attributes vs. Instance Attributes

Example:

Create objects of the Dog class

dog1 = Dog("Buddy", 3)

dog2 = Dog("Max", 5)

Access attributes

print(dog1.name) # Output: Buddy

print(dog2.age) # Output: 5

Call methods

print(dog1.bark()) # Output: Buddy says woof!

Buddy

5

Buddy says woof!

Class attributes: Shared by all instances of the class.
Instance attributes: Unique to each instance.

print(dog1.species) # Output: Canis familiaris (class attribute)

print(dog2.species) # Output: Canis familiaris (class attribute)

dog1.species = "Golden Retriever" # Modifying instance attribute

print(dog1.species) # Output: Golden Retriever

print(dog2.species) # Output: Canis familiaris (unchanged)

Canis familiaris

Canis familiaris

Golden Retriever

Canis familiaris

Adding Methods to a Class

Methods are functions defined inside a class. They define the behavior of objects.

Example:

The __str__ Method

The __str__ method is a special method that returns a string representation of the object. It
is called when you use the print() function or str() on the object.

Example:

class Dog:

def __init__(self, name, age):

self.name = name

self.age = age

def bark(self):

return f"{self.name} says woof!"

def get_age(self):

return f"{self.name} is {self.age} years old."

Create an object

dog = Dog("Buddy", 3)

Call methods

print(dog.bark()) # Output: Buddy says woof!

print(dog.get_age()) # Output: Buddy is 3 years old.

Buddy says woof!

Buddy is 3 years old.

class Dog:

def __init__(self, name, age):

self.name = name

self.age = age

def __str__(self):

return f"{self.name} is {self.age} years old."

Create an object

dog = Dog("Buddy", 3)

Inheritance

Inheritance allows you to create a new class (child class) that inherits attributes and
methods from an existing class (parent class). This promotes code reuse and modularity.

Example:

Example Program

Print the object

print(dog) # Output: Buddy is 3 years old.

Buddy is 3 years old.

Parent class

class Animal:

def __init__(self, name):

self.name = name

def speak(self):

return f"{self.name} makes a sound."

Child class

class Dog(Animal):

def speak(self):

return f"{self.name} says woof!"

Create objects

animal = Animal("Generic Animal")

dog = Dog("Buddy")

Call methods

print(animal.speak()) # Output: Generic Animal makes a sound.

print(dog.speak()) # Output: Buddy says woof!

Generic Animal makes a sound.

Buddy says woof!

Working with Classes & Objects

Define a class

class Dog:

Class attribute

species = "Canis familiaris"

Constructor

def __init__(self, name, age):

self.name = name

self.age = age

Instance method

def bark(self):

return f"{self.name} says woof!"

Special method for string representation

def __str__(self):

return f"{self.name} is {self.age} years old."

Create objects

dog1 = Dog("Buddy", 3)

dog2 = Dog("Max", 5)

Access attributes

print(dog1.name) # Output: Buddy

print(dog2.age) # Output: 5

Call methods

print(dog1.bark()) # Output: Buddy says woof!

print(dog2.bark()) # Output: Max says woof!

Print objects

print(dog1) # Output: Buddy is 3 years old.

print(dog2) # Output: Max is 5 years old.

Inheritance example

class Animal:

def __init__(self, name):

self.name = name

def speak(self):

return f"{self.name} makes a sound."

class Dog(Animal):

def speak(self):

return f"{self.name} says woof!"

Create objects

animal = Animal("Generic Animal")

dog = Dog("Buddy")

Call methods

25. Object Functions
Object functions (also called methods) are functions defined within a class that operate on
the attributes of an object. They define the behavior of objects and allow you to perform
actions or computations using the object's data.

Defining Object Functions

Object functions are defined inside a class and take self as their first parameter. The self
parameter refers to the instance of the class and allows you to access its attributes and
other methods.

Syntax:

Example:

print(animal.speak()) # Output: Generic Animal makes a sound.

print(dog.speak()) # Output: Buddy says woof!

Buddy

5

Buddy says woof!

Max says woof!

Buddy is 3 years old.

Max is 5 years old.

Generic Animal makes a sound.

Buddy says woof!

class ClassName:

def method_name(self, parameters):

Code to execute

class Dog:

def __init__(self, name, age):

self.name = name

self.age = age

Object function

def bark(self):

return f"{self.name} says woof!"

Another object function

Calling Object Functions

To call an object function, use the dot notation on an instance of the class.

Example:

Modifying Object Attributes

Object functions can modify the attributes of an object.

Example:

def get_age(self):

return f"{self.name} is {self.age} years old."

Create an object

dog = Dog("Buddy", 3)

Call object functions

print(dog.bark()) # Output: Buddy says woof!

print(dog.get_age()) # Output: Buddy is 3 years old.

Buddy says woof!

Buddy is 3 years old.

class Dog:

def __init__(self, name, age):

self.name = name

self.age = age

Object function to update age

def birthday(self):

self.age += 1

return f"{self.name} is now {self.age} years old."

Create an object

dog = Dog("Buddy", 3)

Call the birthday function

print(dog.birthday()) # Output: Buddy is now 4 years old.

print(dog.birthday()) # Output: Buddy is now 5 years old.

Using Object Functions with Parameters

Object functions can take additional parameters to perform more complex operations.

Example:

Special Object Functions

Python provides special object functions (also called magic methods or dunder methods)
that allow you to define how objects behave in certain situations, such as addition,
comparison, or string representation.

Common Special Methods:

Buddy is now 4 years old.

Buddy is now 5 years old.

class Calculator:

def __init__(self, initial_value=0):

self.value = initial_value

Object function with parameters

def add(self, number):

self.value += number

return self.value

def subtract(self, number):

self.value -= number

return self.value

Create an object

calc = Calculator(10)

Call object functions with parameters

print(calc.add(5)) # Output: 15

print(calc.subtract(3)) # Output: 12

15

12

1. __str__ : Returns a string representation of the object (used by print() and str()).
2. __len__ : Returns the length of the object (used by len()).

Example:

Example Program

3. __add__ : Defines behavior for the + operator.
4. __eq__ : Defines behavior for the == operator.

class Dog:

def __init__(self, name, age):

self.name = name

self.age = age

Special method for string representation

def __str__(self):

return f"{self.name} is {self.age} years old."

Special method for addition

def __add__(self, other):

return Dog(f"{self.name} and {other.name}", self.age + other.age)

Create objects

dog1 = Dog("Buddy", 3)

dog2 = Dog("Max", 5)

Use special methods

print(dog1) # Output: Buddy is 3 years old.

combined_dog = dog1 + dog2

print(combined_dog) # Output: Buddy and Max is 8 years old.

Buddy is 3 years old.

Buddy and Max is 8 years old.

Working with Object Functions

Define a class

class Dog:

def __init__(self, name, age):

self.name = name

self.age = age

Object function

def bark(self):

return f"{self.name} says woof!"

Object function to update age

def birthday(self):

self.age += 1

return f"{self.name} is now {self.age} years old."

Special method for string representation

def __str__(self):

return f"{self.name} is {self.age} years old."

Create an object

dog = Dog("Buddy", 3)

Call object functions

print(dog.bark()) # Output: Buddy says woof!

print(dog.birthday()) # Output: Buddy is now 4 years old.

print(dog.birthday()) # Output: Buddy is now 5 years old.

Print the object

print(dog) # Output: Buddy is 5 years old.

Using object functions with parameters

class Calculator:

def __init__(self, initial_value=0):

self.value = initial_value

def add(self, number):

self.value += number

return self.value

def subtract(self, number):

self.value -= number

return self.value

Create an object

calc = Calculator(10)

Call object functions with parameters

print(calc.add(5)) # Output: 15

print(calc.subtract(3)) # Output: 12

Special object functions

class Dog:

def __init__(self, name, age):

self.name = name

self.age = age

def __str__(self):

return f"{self.name} is {self.age} years old."

def __add__(self, other):

26. Inheritance
Inheritance is a fundamental concept in object-oriented programming (OOP) that allows you
to create a new class (called a child class or subclass) based on an existing class (called a
parent class or superclass). The child class inherits attributes and methods from the parent
class, promoting code reuse and modularity.

Why Use Inheritance?

Syntax of Inheritance

To create a child class, specify the parent class in parentheses after the child class name.

return Dog(f"{self.name} and {other.name}", self.age + other.age)

Create objects

dog1 = Dog("Buddy", 3)

dog2 = Dog("Max", 5)

Use special methods

print(dog1) # Output: Buddy is 3 years old.

combined_dog = dog1 + dog2

print(combined_dog) # Output: Buddy and Max is 8 years old.

Buddy says woof!

Buddy is now 4 years old.

Buddy is now 5 years old.

Buddy is 5 years old.

15

12

Buddy is 3 years old.

Buddy and Max is 8 years old.

Code Reuse: Avoid duplicating code by inheriting common functionality from a parent
class.
Modularity: Organize code into logical hierarchies.
Extensibility: Add or modify functionality in the child class without affecting the parent
class.

Syntax:

Example of Inheritance

Here’s a simple example where a Dog class inherits from an Animal class:

The super() Function

class ParentClass:

Parent class attributes and methods

class ChildClass(ParentClass):

Child class attributes and methods

Parent class

class Animal:

def __init__(self, name):

self.name = name

def speak(self):

return f"{self.name} makes a sound."

Child class

class Dog(Animal):

def speak(self):

return f"{self.name} says woof!"

Create objects

animal = Animal("Generic Animal")

dog = Dog("Buddy")

Call methods

print(animal.speak()) # Output: Generic Animal makes a sound.

print(dog.speak()) # Output: Buddy says woof!

Generic Animal makes a sound.

Buddy says woof!

The Dog class inherits the __init__ method and the name attribute from the Animal
class.
The Dog class overrides the speak method to provide its own implementation.

The super() function allows you to call methods from the parent class. This is useful when
you want to extend the functionality of a parent method in the child class.

Example:

Method Overriding

When a child class defines a method with the same name as a method in the parent class,
the child class’s method overrides the parent class’s method.

Example:

class Animal:

def __init__(self, name):

self.name = name

def speak(self):

return f"{self.name} makes a sound."

class Dog(Animal):

def __init__(self, name, breed):

super().__init__(name) # Call the parent class's __init__ method

self.breed = breed

def speak(self):

return f"{self.name} says woof!"

Create an object

dog = Dog("Buddy", "Golden Retriever")

Access attributes and methods

print(dog.name) # Output: Buddy

print(dog.breed) # Output: Golden Retriever

print(dog.speak()) # Output: Buddy says woof!

Buddy

Golden Retriever

Buddy says woof!

class Animal:

def speak(self):

return "Animal sound"

class Dog(Animal):

def speak(self):

Adding New Methods in the Child Class

You can add new methods in the child class that are not present in the parent class.

Example:

Multi-Level Inheritance

return "Woof!"

Create objects

animal = Animal()

dog = Dog()

print(animal.speak()) # Output: Animal sound

print(dog.speak()) # Output: Woof!

Animal sound

Woof!

class Animal:

def __init__(self, name):

self.name = name

def speak(self):

return f"{self.name} makes a sound."

class Dog(Animal):

def fetch(self):

return f"{self.name} fetches the ball."

Create an object

dog = Dog("Buddy")

Call methods

print(dog.speak()) # Output: Buddy makes a sound.

print(dog.fetch()) # Output: Buddy fetches the ball.

Buddy makes a sound.

Buddy fetches the ball.

In multi-level inheritance, a child class inherits from another child class, creating a chain of
inheritance.

Example:

Multiple Inheritance

Python supports multiple inheritance, where a child class can inherit from more than one
parent class.

Example:

class Animal:

def __init__(self, name):

self.name = name

def speak(self):

return f"{self.name} makes a sound."

class Dog(Animal):

def speak(self):

return f"{self.name} says woof!"

class Puppy(Dog):

def play(self):

return f"{self.name} is playing."

Create an object

puppy = Puppy("Max")

Call methods

print(puppy.speak()) # Output: Max says woof!

print(puppy.play()) # Output: Max is playing.

Max says woof!

Max is playing.

class Animal:

def __init__(self, name):

self.name = name

def speak(self):

return f"{self.name} makes a sound."

class Pet:

Example Program

def play(self):

return f"{self.name} is playing."

class Dog(Animal, Pet):

def speak(self):

return f"{self.name} says woof!"

Create an object

dog = Dog("Buddy")

Call methods

print(dog.speak()) # Output: Buddy says woof!

print(dog.play()) # Output: Buddy is playing.

Buddy says woof!

Buddy is playing.

Working with Inheritance

Parent class

class Animal:

def __init__(self, name):

self.name = name

def speak(self):

return f"{self.name} makes a sound."

Child class

class Dog(Animal):

def __init__(self, name, breed):

super().__init__(name)

self.breed = breed

def speak(self):

return f"{self.name} says woof!"

def fetch(self):

return f"{self.name} fetches the ball."

Create objects

animal = Animal("Generic Animal")

dog = Dog("Buddy", "Golden Retriever")

intermediate Python

1. Intro
The Intermediate Python section builds on the foundational knowledge covered in the
Beginner Python section. Here, we’ll explore more advanced concepts and techniques that
will help you write cleaner, more efficient, and more professional Python code.

Call methods

print(animal.speak()) # Output: Generic Animal makes a sound.

print(dog.speak()) # Output: Buddy says woof!

print(dog.fetch()) # Output: Buddy fetches the ball.

Multi-level inheritance

class Puppy(Dog):

def play(self):

return f"{self.name} is playing."

puppy = Puppy("Max", "Labrador")

print(puppy.speak()) # Output: Max says woof!

print(puppy.play()) # Output: Max is playing.

Multiple inheritance

class Pet:

def play(self):

return f"{self.name} is playing."

class Cat(Animal, Pet):

def speak(self):

return f"{self.name} says meow!"

cat = Cat("Whiskers")

print(cat.speak()) # Output: Whiskers says meow!

print(cat.play()) # Output: Whiskers is playing.

Generic Animal makes a sound.

Buddy says woof!

Buddy fetches the ball.

Max says woof!

Max is playing.

Whiskers says meow!

Whiskers is playing.

What to Expect in Intermediate Python

In this section, you’ll learn about:

By the end of this section, you’ll have a deeper understanding of Python and be equipped to
tackle more complex programming challenges.

Why Learn Intermediate Python?

How to Use This Section

Example: A Taste of Intermediate Python

Advanced data structures like sets, collections, and itertools.
Powerful Python features like lambda functions, decorators, and generators.
Techniques for handling exceptions and errors and logging.
Working with JSON and generating random numbers.
Understanding function arguments and the asterisk (*) operator.
Concepts like shallow vs deep copying and context managers.
Exploring multithreading and multiprocessing for concurrent programming.

1. Write Cleaner Code: Learn techniques to make your code more readable, modular, and
maintainable.

2. Improve Efficiency: Use advanced features like generators and decorators to optimize
your code.

3. Handle Real-World Scenarios: Master error handling, logging, and working with
external data formats like JSON.

4. Unlock Python’s Full Potential: Explore Python’s powerful libraries and tools for tasks
like multithreading and multiprocessing.

Follow Along: Type out the examples and experiment with them to solidify your
understanding.
Practice: Try the exercises and challenges provided at the end of each topic.
Explore Further: Use the official Python documentation and online resources to dive
deeper into topics that interest you.

Here’s a quick example to give you a taste of what’s to come. We’ll use a lambda function
and the map() function to square a list of numbers:

2. Lists
Lists are one of Python’s most versatile and widely used data structures. In the Beginner
Python section, we covered the basics of lists. Now, we’ll dive deeper into advanced list
operations, comprehensions, and performance considerations.

Recap: What Are Lists?

A list is an ordered, mutable collection of items. Lists can store elements of different data
types and are defined using square brackets [] .

Example:

Advanced List Operations

Using a lambda function with map()

numbers = [1, 2, 3, 4, 5]

squared_numbers = list(map(lambda x: x ** 2, numbers))

print(squared_numbers) # Output: [1, 4, 9, 16, 25]

[1, 4, 9, 16, 25]

Lambda functions: Anonymous functions defined using the lambda keyword.
map(): Applies a function to all items in an iterable (e.g., a list).

fruits = ["apple", "banana", "cherry"]

numbers = [1, 2, 3, 4, 5]

mixed = [1, "apple", 3.14, True]

1. List Comprehensions
List comprehensions provide a concise way to create lists. They are faster and more
readable than traditional loops.

Syntax:

Example:

[expression for item in iterable if condition]

Create a list of squares

squares = [x ** 2 for x in range(1, 6)]

print(squares) # Output: [1, 4, 9, 16, 25]

Filter even numbers

evens = [x for x in range(10) if x % 2 == 0]

print(evens) # Output: [0, 2, 4, 6, 8]

[1, 4, 9, 16, 25]

[0, 2, 4, 6, 8]

2. Nested List Comprehensions
You can use nested list comprehensions to create lists of lists (2D lists).

Example:

Create a 3x3 matrix

matrix = [[i + j for j in range(3)] for i in range(3)]

print(matrix)

Output: [[0, 1, 2], [1, 2, 3], [2, 3, 4]]

[[0, 1, 2], [1, 2, 3], [2, 3, 4]]

3. Slicing with Steps
Slicing allows you to extract a portion of a list. You can also specify a step to skip
elements.

Example:

numbers = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Extract every second element

print(numbers[::2]) # Output: [0, 2, 4, 6, 8]

Reverse the list

print(numbers[::-1]) # Output: [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

[0, 2, 4, 6, 8]

[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

4. List Unpacking
You can unpack a list into individual variables.

Example:

fruits = ["apple", "banana", "cherry"]

a, b, c = fruits

print(a, b, c) # Output: apple banana cherry

apple banana cherry

5. Zip and Unzip Lists
The zip() function combines multiple lists into a list of tuples. You can also unzip them
back into separate lists.

Example:

names = ["Alice", "Bob", "Charlie"]

ages = [25, 30, 35]

Zip lists

zipped = list(zip(names, ages))

print(zipped) # Output: [('Alice', 25), ('Bob', 30), ('Charlie', 35)]

Unzip lists

names_unzipped, ages_unzipped = zip(*zipped)

print(names_unzipped) # Output: ('Alice', 'Bob', 'Charlie')

print(ages_unzipped) # Output: (25, 30, 35)

[('Alice', 25), ('Bob', 30), ('Charlie', 35)]

('Alice', 'Bob', 'Charlie')

(25, 30, 35)

6. List Methods
Python provides several built-in methods for working with lists. Here are some advanced
ones:

extend() : Adds multiple elements to the end of a list.
insert() : Inserts an element at a specific index.
pop() : Removes and returns an element at a specific index.
remove() : Removes the first occurrence of a value.
index() : Returns the index of the first occurrence of a value.
count() : Returns the number of occurrences of a value.
sort() : Sorts the list in place.

Performance Considerations

Example Program

Example:

reverse() : Reverses the list in place.

numbers = [3, 1, 4, 1, 5, 9]

numbers.sort()

print(numbers) # Output: [1, 1, 3, 4, 5, 9]

numbers.reverse()

print(numbers) # Output: [9, 5, 4, 3, 1, 1]

[1, 1, 3, 4, 5, 9]

[9, 5, 4, 3, 1, 1]

Time Complexity: Be aware of the time complexity of list operations. For example:
Appending: O(1)
Inserting/Deleting: O(n)
Searching: O(n)

Memory Usage: Lists can consume a lot of memory for large datasets. Consider using
generators or arrays (from the array module) for memory efficiency.

Working with Lists

List comprehensions

squares = [x ** 2 for x in range(1, 6)]

print("Squares:", squares) # Output: [1, 4, 9, 16, 25]

Nested list comprehensions

matrix = [[i + j for j in range(3)] for i in range(3)]

print("Matrix:", matrix) # Output: [[0, 1, 2], [1, 2, 3], [2, 3, 4]]

Slicing with steps

numbers = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

print("Every second element:", numbers[::2]) # Output: [0, 2, 4, 6, 8]

print("Reversed list:", numbers[::-1]) # Output: [9, 8, 7, 6, 5, 4, 3, 2,

1, 0]

3. Tuples
Tuples are another fundamental data structure in Python. They are similar to lists but with
one key difference: tuples are immutable. This means that once a tuple is created, its
elements cannot be changed, added, or removed. Tuples are often used for fixed collections
of items, such as coordinates or database records.

What Are Tuples?

List unpacking

fruits = ["apple", "banana", "cherry"]

a, b, c = fruits

print("Unpacked:", a, b, c) # Output: apple banana cherry

Zip and unzip lists

names = ["Alice", "Bob", "Charlie"]

ages = [25, 30, 35]

zipped = list(zip(names, ages))

print("Zipped:", zipped) # Output: [('Alice', 25), ('Bob', 30), ('Charlie',

35)]

names_unzipped, ages_unzipped = zip(*zipped)

print("Unzipped names:", names_unzipped) # Output: ('Alice', 'Bob',

'Charlie')

print("Unzipped ages:", ages_unzipped) # Output: (25, 30, 35)

List methods

numbers = [3, 1, 4, 1, 5, 9]

numbers.sort()

print("Sorted:", numbers) # Output: [1, 1, 3, 4, 5, 9]

numbers.reverse()

print("Reversed:", numbers) # Output: [9, 5, 4, 3, 1, 1]

Squares: [1, 4, 9, 16, 25]

Matrix: [[0, 1, 2], [1, 2, 3], [2, 3, 4]]

Every second element: [0, 2, 4, 6, 8]

Reversed list: [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

Unpacked: apple banana cherry

Zipped: [('Alice', 25), ('Bob', 30), ('Charlie', 35)]

Unzipped names: ('Alice', 'Bob', 'Charlie')

Unzipped ages: (25, 30, 35)

Sorted: [1, 1, 3, 4, 5, 9]

Reversed: [9, 5, 4, 3, 1, 1]

A tuple is an ordered, immutable collection of items. Tuples are defined using parentheses
() .

Example:

Creating Tuples

You can create a tuple by enclosing elements in parentheses () . If a tuple has only one
element, you must include a trailing comma to distinguish it from a regular value.

Example:

Accessing Tuple Elements

You can access tuple elements using indexing and slicing, just like lists.

Example:

coordinates = (10.0, 20.0)

fruits = ("apple", "banana", "cherry")

mixed = (1, "apple", 3.14, True)

Single-element tuple

single = (42,)

Multiple elements

multiple = (1, 2, 3)

fruits = ("apple", "banana", "cherry")

Access by index

print(fruits[0]) # Output: apple

Negative indexing

print(fruits[-1]) # Output: cherry

Slicing

print(fruits[1:3]) # Output: ('banana', 'cherry')

apple

cherry

('banana', 'cherry')

Tuples Are Immutable

Once a tuple is created, you cannot modify its elements. Attempting to do so will raise a
TypeError .

Example:

Tuple Operations

fruits = ("apple", "banana", "cherry")

This will raise an error

fruits[0] = "orange" # TypeError: 'tuple' object does not support item

assignment

TypeError Traceback (most recent call last)

Cell In[194], line 4

1 fruits = ("apple", "banana", "cherry")

3 # This will raise an error

----> 4 fruits[0] = "orange"

TypeError: 'tuple' object does not support item assignment

1. Concatenation: Combine two tuples using the + operator.

tuple1 = (1, 2, 3)

tuple2 = (4, 5, 6)

combined = tuple1 + tuple2

print(combined) # Output: (1, 2, 3, 4, 5, 6)

(1, 2, 3, 4, 5, 6)

2. Repetition: Repeat a tuple using the * operator.

repeated = (1, 2) * 3

print(repeated) # Output: (1, 2, 1, 2, 1, 2)

Tuple Unpacking

You can unpack a tuple into individual variables. This is useful for assigning multiple values
at once.

Example:

Using Tuples as Dictionary Keys

Because tuples are immutable, they can be used as keys in dictionaries, unlike lists.

Example:

(1, 2, 1, 2, 1, 2)

3. Membership: Check if an element exists in a tuple using the in keyword.

fruits = ("apple", "banana", "cherry")

print("banana" in fruits) # Output: True

True

4. Length: Get the number of elements in a tuple using the len() function.

print(len(fruits)) # Output: 3

3

coordinates = (10.0, 20.0)

x, y = coordinates

print(x, y) # Output: 10.0 20.0

10.0 20.0

location = {

(40.7128, -74.0060): "New York",

(34.0522, -118.2437): "Los Angeles"

}

Tuple Methods

Tuples have only two built-in methods:

When to Use Tuples

Example Program

print(location[(40.7128, -74.0060)]) # Output: New York

New York

1. count() : Returns the number of occurrences of a value.

numbers = (1, 2, 3, 1, 2, 1)

print(numbers.count(1)) # Output: 3

3

2. index() : Returns the index of the first occurrence of a value.

print(numbers.index(2)) # Output: 1

1

Use tuples when you need an immutable collection of items.
Use tuples for fixed data, such as coordinates, database records, or function arguments.
Use tuples as dictionary keys.

Working with Tuples

Creating tuples

coordinates = (10.0, 20.0)

fruits = ("apple", "banana", "cherry")

single = (42,)

Accessing elements

print("First fruit:", fruits[0]) # Output: apple

print("Last fruit:", fruits[-1]) # Output: cherry

print("Sliced fruits:", fruits[1:3]) # Output: ('banana', 'cherry')

Tuple operations

tuple1 = (1, 2, 3)

tuple2 = (4, 5, 6)

combined = tuple1 + tuple2

print("Combined tuple:", combined) # Output: (1, 2, 3, 4, 5, 6)

repeated = (1, 2) * 3

print("Repeated tuple:", repeated) # Output: (1, 2, 1, 2, 1, 2)

Membership

print("Is 'banana' in fruits?", "banana" in fruits) # Output: True

Length

print("Number of fruits:", len(fruits)) # Output: 3

Tuple unpacking

x, y = coordinates

print("Coordinates:", x, y) # Output: 10.0 20.0

Using tuples as dictionary keys

location = {

(40.7128, -74.0060): "New York",

(34.0522, -118.2437): "Los Angeles"

}

print("Location:", location[(40.7128, -74.0060)]) # Output: New York

Tuple methods

numbers = (1, 2, 3, 1, 2, 1)

print("Count of 1:", numbers.count(1)) # Output: 3

print("Index of 2:", numbers.index(2)) # Output: 1

First fruit: apple

Last fruit: cherry

Sliced fruits: ('banana', 'cherry')

Combined tuple: (1, 2, 3, 4, 5, 6)

Repeated tuple: (1, 2, 1, 2, 1, 2)

Is 'banana' in fruits? True

Number of fruits: 3

Coordinates: 10.0 20.0

Location: New York

Count of 1: 3

Index of 2: 1

4. Dictionaries
Dictionaries are one of Python’s most powerful and versatile data structures. They store data
in key-value pairs, allowing you to quickly retrieve values based on their keys. Dictionaries
are unordered (in Python versions before 3.7), mutable, and optimized for fast lookups.

What Are Dictionaries?

A dictionary is a collection of key-value pairs, where each key is unique. Dictionaries are
defined using curly braces {} or the dict() constructor.

Example:

Accessing Dictionary Values

You can access values in a dictionary using their keys. If the key does not exist, Python will
raise a KeyError . To avoid this, you can use the get() method, which returns None (or a
default value) if the key is not found.

Example:

Using curly braces

person = {

"name": "Alice",

"age": 25,

"city": "New York"

}

Using dict() constructor

person = dict(name="Alice", age=25, city="New York")

person = {

"name": "Alice",

"age": 25,

"city": "New York"

}

Accessing values

print(person["name"]) # Output: Alice

print(person.get("age")) # Output: 25

Handling missing keys

print(person.get("country", "Unknown")) # Output: Unknown

Adding or Updating Dictionary Entries

You can add a new key-value pair or update an existing one by assigning a value to a key.

Example:

Removing Dictionary Entries

You can remove key-value pairs using:

Alice

25

Unknown

person = {

"name": "Alice",

"age": 25,

"city": "New York"

}

Adding a new key-value pair

person["country"] = "USA"

Updating an existing key

person["age"] = 26

print(person)

Output: {'name': 'Alice', 'age': 26, 'city': 'New York', 'country': 'USA'}

{'name': 'Alice', 'age': 26, 'city': 'New York', 'country': 'USA'}

1. del : Deletes the key-value pair.

del person["city"]

print(person) # Output: {'name': 'Alice', 'age': 26, 'country': 'USA'}

{'name': 'Alice', 'age': 26, 'country': 'USA'}

2. pop() : Removes the key-value pair and returns the value.

Dictionary Methods

Here are some commonly used dictionary methods:

age = person.pop("age")

print(age) # Output: 26

print(person) # Output: {'name': 'Alice', 'country': 'USA'}

26

{'name': 'Alice', 'country': 'USA'}

3. popitem() : Removes and returns the last inserted key-value pair (Python 3.7+).

last_item = person.popitem()

print(last_item) # Output: ('country', 'USA')

print(person) # Output: {'name': 'Alice'}

('country', 'USA')

{'name': 'Alice'}

4. clear() : Removes all key-value pairs from the dictionary.

person.clear()

print(person) # Output: {}

{}

1. keys() : Returns a list of all keys.

print(person.keys()) # Output: dict_keys(['name', 'age', 'city'])

dict_keys(['name', 'age', 'city', 'country'])

2. values() : Returns a list of all values.

print(person.values()) # Output: dict_values(['Alice', 25, 'New York'])

dict_values(['Alice', 26, 'New York', 'USA'])

Dictionary Comprehensions

Similar to list comprehensions, dictionary comprehensions allow you to create dictionaries in
a concise way.

Syntax:

Example:

3. items() : Returns a list of key-value pairs as tuples.

print(person.items()) # Output: dict_items([('name', 'Alice'), ('age',

25), ('city', 'New York')])

dict_items([('name', 'Alice'), ('age', 26), ('city', 'New York'),

('country', 'USA')])

4. update() : Merges another dictionary into the current one.

person.update({"country": "USA", "age": 26})

print(person) # Output: {'name': 'Alice', 'age': 26, 'city': 'New York',

'country': 'USA'}

{'name': 'Alice', 'age': 26, 'city': 'New York', 'country': 'USA'}

5. copy() : Returns a shallow copy of the dictionary.

person_copy = person.copy()

print(person_copy)

{'name': 'Alice', 'age': 26, 'city': 'New York', 'country': 'USA'}

{key_expression: value_expression for item in iterable}

Create a dictionary of squares

squares = {x: x ** 2 for x in range(1, 6)}

print(squares) # Output: {1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

Nested Dictionaries

Dictionaries can contain other dictionaries, allowing you to create complex data structures.

Example:

Example Program

{1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

students = {

"Alice": {"age": 25, "grade": "A"},

"Bob": {"age": 22, "grade": "B"},

"Charlie": {"age": 23, "grade": "C"}

}

Accessing nested dictionary values

print(students["Alice"]["age"]) # Output: 25

25

Working with Dictionaries

Creating a dictionary

person = {

"name": "Alice",

"age": 25,

"city": "New York"

}

Accessing values

print("Name:", person["name"]) # Output: Alice

print("Age:", person.get("age")) # Output: 25

Adding/updating entries

person["country"] = "USA"

person["age"] = 26

Removing entries

del person["city"]

age = person.pop("age")

last_item = person.popitem()

5. Sets
A set is an unordered collection of unique elements. Sets are useful for tasks that involve
membership testing, removing duplicates, and performing mathematical operations like
unions, intersections, and differences.

What Are Sets?

Example:

Dictionary methods

print("Keys:", person.keys()) # Output: dict_keys(['name'])

print("Values:", person.values()) # Output: dict_values(['Alice'])

print("Items:", person.items()) # Output: dict_items([('name', 'Alice')])

Dictionary comprehension

squares = {x: x ** 2 for x in range(1, 6)}

print("Squares:", squares) # Output: {1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

Nested dictionaries

students = {

"Alice": {"age": 25, "grade": "A"},

"Bob": {"age": 22, "grade": "B"},

"Charlie": {"age": 23, "grade": "C"}

}

print("Alice's age:", students["Alice"]["age"]) # Output: 25

Name: Alice

Age: 25

Keys: dict_keys(['name'])

Values: dict_values(['Alice'])

Items: dict_items([('name', 'Alice')])

Squares: {1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

Alice's age: 25

Sets are defined using curly braces {} or the set() constructor.
Sets do not allow duplicate elements. If you try to add a duplicate, it will be ignored.
Sets are unordered, meaning the elements are not stored in any specific order.

Using curly braces

fruits = {"apple", "banana", "cherry"}

Creating Sets

You can create a set by enclosing elements in curly braces {} or by passing an iterable
(e.g., a list) to the set() constructor.

Example:

Adding and Removing Elements

Using set() constructor

numbers = set([1, 2, 3, 4, 5])

Creating a set with curly braces

fruits = {"apple", "banana", "cherry"}

Creating a set with set() constructor

numbers = set([1, 2, 3, 4, 5])

Creating an empty set

empty_set = set() # Note: {} creates an empty dictionary, not a set

1. Adding Elements: Use the add() method to add a single element or the update()
method to add multiple elements.

fruits = {"apple", "banana", "cherry"}

Add a single element

fruits.add("orange")

Add multiple elements

fruits.update(["mango", "grape"])

print(fruits) # Output: {'apple', 'banana', 'cherry', 'orange', 'mango',

'grape'}

{'orange', 'cherry', 'apple', 'banana', 'mango', 'grape'}

2. Removing Elements:
remove() : Removes a specific element. Raises a KeyError if the element is not
found.

Set Operations

Sets support mathematical operations like unions, intersections, differences, and symmetric
differences.

fruits.remove("banana")

print(fruits) # Output: {'apple', 'cherry', 'orange', 'mango',

'grape'}

{'orange', 'cherry', 'apple', 'mango', 'grape'}

discard() : Removes a specific element if it exists. Does not raise an error if the
element is not found.

fruits.discard("banana") # No error if "banana" is not in the set

clear() : Removes all elements from the set.

fruits.clear()

print(fruits) # Output: set()

set()

1. Union (|): Combines elements from two sets.

set1 = {1, 2, 3}

set2 = {3, 4, 5}

union_set = set1 | set2

print(union_set) # Output: {1, 2, 3, 4, 5}

{1, 2, 3, 4, 5}

2. Intersection (&): Returns elements common to both sets.

intersection_set = set1 & set2

print(intersection_set) # Output: {3}

{3}

Set Methods

Here are some commonly used set methods:

3. Difference (-): Returns elements in the first set that are not in the second set.

difference_set = set1 - set2

print(difference_set) # Output: {1, 2}

{1, 2}

4. Symmetric Difference (^): Returns elements that are in either set but not in both.

symmetric_difference_set = set1 ^ set2

print(symmetric_difference_set) # Output: {1, 2, 4, 5}

{1, 2, 4, 5}

1. len() : Returns the number of elements in the set.

print(len(fruits)) # Output: 5

5

2. in : Checks if an element exists in the set.

print("apple" in fruits) # Output: True

True

3. issubset() : Checks if one set is a subset of another.

set1 = {1, 2}

set2 = {1, 2, 3, 4}

print(set1.issubset(set2)) # Output: True

True

Set Comprehensions

Similar to list comprehensions, set comprehensions allow you to create sets in a concise
way.

Syntax:

Example:

Example Program

4. issuperset() : Checks if one set is a superset of another.

print(set2.issuperset(set1)) # Output: True

True

5. isdisjoint() : Checks if two sets have no common elements.

set3 = {5, 6}

print(set1.isdisjoint(set3)) # Output: True

True

{expression for item in iterable if condition}

Create a set of squares

squares = {x ** 2 for x in range(1, 6)}

print(squares) # Output: {1, 4, 9, 16, 25}

{1, 4, 9, 16, 25}

Working with Sets

Creating sets

fruits = {"apple", "banana", "cherry"}

numbers = set([1, 2, 3, 4, 5])

6. Strings
Strings are one of the most commonly used data types in Python. They are used to
represent text and are defined using single quotes ' ' , double quotes " " , or triple quotes
''' ''' or """ """ . In this section, we’ll explore advanced string operations, formatting,
and manipulation techniques.

Adding elements

fruits.add("orange")

fruits.update(["mango", "grape"])

Removing elements

fruits.remove("banana")

fruits.discard("banana") # No error if "banana" is not in the set

removed_fruit = fruits.pop()

fruits.clear()

Set operations

set1 = {1, 2, 3}

set2 = {3, 4, 5}

union_set = set1 | set2

intersection_set = set1 & set2

difference_set = set1 - set2

symmetric_difference_set = set1 ^ set2

Set methods

print(len(fruits)) # Output: 0

print("apple" in fruits) # Output: False

print(set1.issubset(set2)) # Output: False

print(set2.issuperset(set1)) # Output: False

print(set1.isdisjoint(set2)) # Output: False

Set comprehension

squares = {x ** 2 for x in range(1, 6)}

print("Squares:", squares) # Output: {1, 4, 9, 16, 25}

0

False

False

False

False

Squares: {1, 4, 9, 16, 25}

What Are Strings?

A string is a sequence of characters. Strings are immutable, meaning once a string is
created, it cannot be changed. However, you can create new strings based on existing ones.

Example:

Accessing String Characters

You can access individual characters in a string using indexing. Python uses zero-based
indexing, meaning the first character has an index of 0 .

Example:

String Slicing

You can extract a substring using slicing. The syntax is [start:stop:step] .

Example:

Using single quotes

message1 = 'Hello, World!'

Using double quotes

message2 = "Python is fun!"

Using triple quotes for multi-line strings

message3 = """This is a

multi-line string."""

text = "Python"

Accessing characters

print(text[0]) # Output: P

print(text[3]) # Output: h

Negative indexing (starts from the end)

print(text[-1]) # Output: n

P

h

n

String Methods

Python provides many built-in methods for working with strings. Here are some commonly
used ones:

text = "Python Programming"

Extract "Python"

print(text[0:6]) # Output: Python

Extract "Programming"

print(text[7:18]) # Output: Programming

Extract every second character

print(text[::2]) # Output: Pto rgamn

Python

Programming

Pto rgamn

1. upper() : Converts the string to uppercase.

print("hello".upper()) # Output: HELLO

HELLO

2. lower() : Converts the string to lowercase.

print("HELLO".lower()) # Output: hello

hello

3. strip() : Removes leading and trailing whitespace.

print(" hello ".strip()) # Output: hello

hello

4. replace() : Replaces a substring with another substring.

print("hello world".replace("world", "Python")) # Output: hello Python

hello Python

5. split() : Splits the string into a list of substrings based on a delimiter.

print("apple,banana,cherry".split(",")) # Output: ['apple', 'banana',

'cherry']

['apple', 'banana', 'cherry']

6. join() : Joins a list of strings into a single string using a delimiter.

print(", ".join(["apple", "banana", "cherry"])) # Output: apple, banana,

cherry

apple, banana, cherry

7. find() : Returns the index of the first occurrence of a substring. Returns -1 if not
found.

print("hello world".find("world")) # Output: 6

6

8. count() : Returns the number of occurrences of a substring.

print("hello world".count("l")) # Output: 3

3

9. startswith() : Checks if the string starts with a specific substring.

print("hello world".startswith("hello")) # Output: True

True

10. endswith() : Checks if the string ends with a specific substring.

String Formatting

Python provides several ways to format strings:

Escape Characters

Escape characters are used to include special characters in strings:

print("hello world".endswith("world")) # Output: True

True

1. f-strings (Python 3.6+): Embed expressions inside string literals.

name = "Alice"

age = 25

print(f"My name is {name} and I am {age} years old.")

My name is Alice and I am 25 years old.

2. format() method: Insert values into placeholders {} .

print("My name is {} and I am {} years old.".format(name, age))

My name is Alice and I am 25 years old.

3. % operator (older style):

print("My name is %s and I am %d years old." % (name, age))

My name is Alice and I am 25 years old.

\n : Newline
\t : Tab
\\ : Backslash
\" : Double quote
\' : Single quote

Example:

Raw Strings

Raw strings ignore escape characters and treat backslashes as literal characters. They are
prefixed with an r .

Example:

String Membership

You can check if a substring exists in a string using the in keyword.

Example:

Example Program

print("Hello\nWorld") # Output: Hello

World

Hello

World

print(r"C:\Users\Alice\Documents") # Output: C:\Users\Alice\Documents

C:\Users\Alice\Documents

text = "Python is fun"

print("fun" in text) # Output: True

True

Working with Strings

Creating strings

message1 = 'Hello, World!'

message2 = "Python is fun!"

message3 = """This is a

multi-line string."""

Accessing characters

text = "Python"

print("First character:", text[0]) # Output: P

print("Last character:", text[-1]) # Output: n

String slicing

print("Sliced string:", text[0:4]) # Output: Pyth

print("Every second character:", text[::2]) # Output: Pto

String methods

print("Uppercase:", "hello".upper()) # Output: HELLO

print("Lowercase:", "HELLO".lower()) # Output: hello

print("Stripped:", " hello ".strip()) # Output: hello

print("Replaced:", "hello world".replace("world", "Python")) # Output:

hello Python

print("Split:", "apple,banana,cherry".split(",")) # Output: ['apple',

'banana', 'cherry']

print("Joined:", ", ".join(["apple", "banana", "cherry"])) # Output: apple,

banana, cherry

print("Found at index:", "hello world".find("world")) # Output: 6

print("Count of 'l':", "hello world".count("l")) # Output: 3

print("Starts with 'hello':", "hello world".startswith("hello")) # Output:

True

print("Ends with 'world':", "hello world".endswith("world")) # Output: True

String formatting

name = "Alice"

age = 25

print(f"My name is {name} and I am {age} years old.") # Output: My name is

Alice and I am 25 years old.

print("My name is {} and I am {} years old.".format(name, age)) # Output:

My name is Alice and I am 25 years old.

print("My name is %s and I am %d years old." % (name, age)) # Output: My

name is Alice and I am 25 years old.

Escape characters

print("Hello\nWorld") # Output: Hello

World

Raw strings

print(r"C:\Users\Alice\Documents") # Output: C:\Users\Alice\Documents

String membership

print("Is 'fun' in the text?", "fun" in "Python is fun") # Output: True

7. Collections
The collections module in Python provides specialized container data types that are
alternatives to the built-in types like list , tuple , dict , and set . These data types are
optimized for specific use cases and can make your code more efficient and readable.

What is the collections Module?

The collections module includes the following data structures:

First character: P

Last character: n

Sliced string: Pyth

Every second character: Pto

Uppercase: HELLO

Lowercase: hello

Stripped: hello

Replaced: hello Python

Split: ['apple', 'banana', 'cherry']

Joined: apple, banana, cherry

Found at index: 6

Count of 'l': 3

Starts with 'hello': True

Ends with 'world': True

My name is Alice and I am 25 years old.

My name is Alice and I am 25 years old.

My name is Alice and I am 25 years old.

Hello

World

C:\Users\Alice\Documents

Is 'fun' in the text? True

1. namedtuple : Creates tuple-like objects with named fields.
2. deque : A double-ended queue for fast appends and pops.
3. Counter : A dictionary subclass for counting hashable objects.
4. defaultdict : A dictionary subclass that provides default values for missing keys.
5. OrderedDict : A dictionary subclass that remembers the order of insertion (less relevant

in Python 3.7+, where regular dictionaries are ordered).
6. ChainMap : Combines multiple dictionaries into a single mapping.

1. namedtuple

A namedtuple is a factory function for creating tuple-like objects with named fields. It makes
code more readable by allowing access to elements by name instead of index.

Syntax:

Example:

2. deque

A deque (double-ended queue) is optimized for fast appends and pops from both ends. It is
more efficient than a list for operations that involve adding or removing elements from the
beginning.

Syntax:

Example:

from collections import namedtuple

NamedTuple = namedtuple("NamedTuple", ["field1", "field2", ...])

from collections import namedtuple

Define a namedtuple

Point = namedtuple("Point", ["x", "y"])

Create an instance

p = Point(10, 20)

Access fields by name

print(p.x, p.y) # Output: 10 20

10 20

from collections import deque

d = deque([iterable])

from collections import deque

Create a deque

d = deque([1, 2, 3])

3. Counter

A Counter is a dictionary subclass for counting hashable objects. It is useful for tallying
occurrences of elements in a collection.

Syntax:

Example:

4. defaultdict

Append to the right

d.append(4) # deque([1, 2, 3, 4])

Append to the left

d.appendleft(0) # deque([0, 1, 2, 3, 4])

Pop from the right

d.pop() # Returns 4, deque([0, 1, 2, 3])

Pop from the left

d.popleft() # Returns 0, deque([1, 2, 3])

0

from collections import Counter

c = Counter([iterable])

from collections import Counter

Count occurrences of elements

c = Counter(["apple", "banana", "apple", "cherry", "banana", "apple"])

print(c) # Output: Counter({'apple': 3, 'banana': 2, 'cherry': 1})

Most common elements

print(c.most_common(2)) # Output: [('apple', 3), ('banana', 2)]

Counter({'apple': 3, 'banana': 2, 'cherry': 1})

[('apple', 3), ('banana', 2)]

A defaultdict is a dictionary subclass that provides default values for missing keys. It
eliminates the need to check if a key exists before accessing it.

Syntax:

Example:

5. OrderedDict

An OrderedDict is a dictionary subclass that remembers the order of insertion. In Python
3.7+, regular dictionaries are ordered by default, so this is less commonly needed.

Syntax:

Example:

from collections import defaultdict

d = defaultdict(default_factory)

from collections import defaultdict

Default value for missing keys is an empty list

d = defaultdict(list)

Add elements

d["fruits"].append("apple")

d["fruits"].append("banana")

print(d) # Output: defaultdict(<class 'list'>, {'fruits': ['apple',

'banana']})

defaultdict(<class 'list'>, {'fruits': ['apple', 'banana']})

from collections import OrderedDict

od = OrderedDict([items])

from collections import OrderedDict

Create an OrderedDict

od = OrderedDict()

od["a"] = 1

od["b"] = 2

od["c"] = 3

6. ChainMap

A ChainMap combines multiple dictionaries into a single mapping. It is useful for searching
through multiple dictionaries as if they were one.

Syntax:

Example:

Example Program

print(od) # Output: OrderedDict([('a', 1), ('b', 2), ('c', 3)])

OrderedDict({'a': 1, 'b': 2, 'c': 3})

from collections import ChainMap

cm = ChainMap(dict1, dict2, ...)

from collections import ChainMap

Create dictionaries

dict1 = {"a": 1, "b": 2}

dict2 = {"b": 3, "c": 4}

Combine dictionaries

cm = ChainMap(dict1, dict2)

Access values

print(cm["a"]) # Output: 1 (from dict1)

print(cm["b"]) # Output: 2 (from dict1, first match)

print(cm["c"]) # Output: 4 (from dict2)

1

2

4

Working with Collections

namedtuple

from collections import namedtuple

Point = namedtuple("Point", ["x", "y"])

p = Point(10, 20)

print("Point:", p.x, p.y) # Output: 10 20

deque

from collections import deque

d = deque([1, 2, 3])

d.append(4)

d.appendleft(0)

print("Deque:", d) # Output: deque([0, 1, 2, 3, 4])

Counter

from collections import Counter

c = Counter(["apple", "banana", "apple", "cherry", "banana", "apple"])

print("Counter:", c) # Output: Counter({'apple': 3, 'banana': 2, 'cherry':

1})

print("Most common:", c.most_common(2)) # Output: [('apple', 3), ('banana',

2)]

defaultdict

from collections import defaultdict

d = defaultdict(list)

d["fruits"].append("apple")

d["fruits"].append("banana")

print("DefaultDict:", d) # Output: defaultdict(<class 'list'>, {'fruits':

['apple', 'banana']})

OrderedDict

from collections import OrderedDict

od = OrderedDict()

od["a"] = 1

od["b"] = 2

od["c"] = 3

print("OrderedDict:", od) # Output: OrderedDict([('a', 1), ('b', 2), ('c',

3)])

ChainMap

from collections import ChainMap

dict1 = {"a": 1, "b": 2}

dict2 = {"b": 3, "c": 4}

cm = ChainMap(dict1, dict2)

print("ChainMap:", cm["a"], cm["b"], cm["c"]) # Output: 1 2 4

Point: 10 20

Deque: deque([0, 1, 2, 3, 4])

Counter: Counter({'apple': 3, 'banana': 2, 'cherry': 1})

Most common: [('apple', 3), ('banana', 2)]

DefaultDict: defaultdict(<class 'list'>, {'fruits': ['apple', 'banana']})

8. Itertools
The itertools module in Python provides a collection of tools for working with iterators.
These tools are designed to be fast, memory-efficient, and easy to use. They are particularly
useful for tasks involving iteration, combinations, permutations, and more.

What is the itertools Module?

The itertools module includes functions for:

Common itertools Functions

OrderedDict: OrderedDict({'a': 1, 'b': 2, 'c': 3})

ChainMap: 1 2 4

Infinite iterators: Generate infinite sequences.
Combinatoric iterators: Generate combinations, permutations, and Cartesian products.
Terminating iterators: Process finite iterables in useful ways.

1. Infinite Iterators
count() : Generates an infinite sequence of numbers.

import itertools

for i in itertools.count(start=1, step=2):

if i > 10:

break

print(i, end=" ") # Output: 1 3 5 7 9

1 3 5 7 9

cycle() : Cycles through an iterable infinitely.

for item in itertools.cycle(["A", "B", "C"]):

if item == "C":

break

print(item, end=" ") # Output: A B

A B

repeat() : Repeats an element infinitely or a specified number of times.

for item in itertools.repeat("Python", 3):

print(item, end=" ") # Output: Python Python Python

Python Python Python

2. Combinatoric Iterators
product() : Computes the Cartesian product of input iterables.

for item in itertools.product("AB", repeat=2):

print(item, end=" ") # Output: ('A', 'A') ('A', 'B') ('B', 'A')

('B', 'B')

('A', 'A') ('A', 'B') ('B', 'A') ('B', 'B')

permutations() : Generates all possible permutations of an iterable.

for item in itertools.permutations("ABC", 2):

print(item, end=" ") # Output: ('A', 'B') ('A', 'C') ('B', 'A')

('B', 'C') ('C', 'A') ('C', 'B')

('A', 'B') ('A', 'C') ('B', 'A') ('B', 'C') ('C', 'A') ('C', 'B')

combinations() : Generates all possible combinations of an iterable.

for item in itertools.combinations("ABC", 2):

print(item, end=" ") # Output: ('A', 'B') ('A', 'C') ('B', 'C')

('A', 'B') ('A', 'C') ('B', 'C')

combinations_with_replacement() : Generates combinations with repeated elements.

for item in itertools.combinations_with_replacement("ABC", 2):

print(item, end=" ") # Output: ('A', 'A') ('A', 'B') ('A', 'C')

('B', 'B') ('B', 'C') ('C', 'C')

('A', 'A') ('A', 'B') ('A', 'C') ('B', 'B') ('B', 'C') ('C', 'C')

3. Terminating Iterators
accumulate() : Returns accumulated sums or results of a binary function.

for item in itertools.accumulate([1, 2, 3, 4]):

print(item, end=" ") # Output: 1 3 6 10

1 3 6 10

chain() : Chains multiple iterables together.

for item in itertools.chain("ABC", "DEF"):

print(item, end=" ") # Output: A B C D E F

A B C D E F

compress() : Filters elements using a boolean mask.

for item in itertools.compress("ABCDEF", [1, 0, 1, 0, 1, 0]):

print(item, end=" ") # Output: A C E

A C E

dropwhile() : Drops elements until a condition is false.

for item in itertools.dropwhile(lambda x: x < 5, [1, 4, 6, 4, 1]):

print(item, end=" ") # Output: 6 4 1

6 4 1

takewhile() : Takes elements until a condition is false.

for item in itertools.takewhile(lambda x: x < 5, [1, 4, 6, 4, 1]):

print(item, end=" ") # Output: 1 4

1 4

groupby() : Groups elements by a key function.

Example Program

data = [("A", 1), ("A", 2), ("B", 3), ("B", 4)]

for key, group in itertools.groupby(data, lambda x: x[0]):

print(key, list(group))

Output:

A [('A', 1), ('A', 2)]

B [('B', 3), ('B', 4)]

A [('A', 1), ('A', 2)]

B [('B', 3), ('B', 4)]

Working with Itertools

Infinite iterators

import itertools

print("Count:")

for i in itertools.count(start=1, step=2):

if i > 10:

break

print(i, end=" ") # Output: 1 3 5 7 9

print("\nCycle:")

for item in itertools.cycle(["A", "B", "C"]):

if item == "C":

break

print(item, end=" ") # Output: A B

print("\nRepeat:")

for item in itertools.repeat("Python", 3):

print(item, end=" ") # Output: Python Python Python

Combinatoric iterators

print("\nProduct:")

for item in itertools.product("AB", repeat=2):

print(item, end=" ") # Output: ('A', 'A') ('A', 'B') ('B', 'A') ('B',

'B')

print("\nPermutations:")

for item in itertools.permutations("ABC", 2):

print(item, end=" ") # Output: ('A', 'B') ('A', 'C') ('B', 'A') ('B',

'C') ('C', 'A') ('C', 'B')

print("\nCombinations:")

for item in itertools.combinations("ABC", 2):

print(item, end=" ") # Output: ('A', 'B') ('A', 'C') ('B', 'C')

print("\nCombinations with Replacement:")

for item in itertools.combinations_with_replacement("ABC", 2):

print(item, end=" ") # Output: ('A', 'A') ('A', 'B') ('A', 'C') ('B',

'B') ('B', 'C') ('C', 'C')

Terminating iterators

print("\nAccumulate:")

for item in itertools.accumulate([1, 2, 3, 4]):

print(item, end=" ") # Output: 1 3 6 10

print("\nChain:")

for item in itertools.chain("ABC", "DEF"):

print(item, end=" ") # Output: A B C D E F

print("\nCompress:")

for item in itertools.compress("ABCDEF", [1, 0, 1, 0, 1, 0]):

print(item, end=" ") # Output: A C E

print("\nDropwhile:")

for item in itertools.dropwhile(lambda x: x < 5, [1, 4, 6, 4, 1]):

print(item, end=" ") # Output: 6 4 1

print("\nTakewhile:")

for item in itertools.takewhile(lambda x: x < 5, [1, 4, 6, 4, 1]):

print(item, end=" ") # Output: 1 4

print("\nGroupby:")

data = [("A", 1), ("A", 2), ("B", 3), ("B", 4)]

for key, group in itertools.groupby(data, lambda x: x[0]):

print(key, list(group))

Output:

A [('A', 1), ('A', 2)]

B [('B', 3), ('B', 4)]

Count:

1 3 5 7 9

Cycle:

A B

Repeat:

Python Python Python

Product:

('A', 'A') ('A', 'B') ('B', 'A') ('B', 'B')

Permutations:

('A', 'B') ('A', 'C') ('B', 'A') ('B', 'C') ('C', 'A') ('C', 'B')

Combinations:

('A', 'B') ('A', 'C') ('B', 'C')

9. Lambda Functions
Lambda functions (also called anonymous functions) are small, inline functions defined
using the lambda keyword. They are useful for short, throwaway functions that are used
only once or in situations where defining a full function using def would be overkill.

What Are Lambda Functions?

A lambda function is a function without a name. It can take any number of arguments but can
only have one expression. The result of the expression is automatically returned.

Syntax:

Example of a Lambda Function

Here’s a simple lambda function that adds two numbers:

Combinations with Replacement:

('A', 'A') ('A', 'B') ('A', 'C') ('B', 'B') ('B', 'C') ('C', 'C')

Accumulate:

1 3 6 10

Chain:

A B C D E F

Compress:

A C E

Dropwhile:

6 4 1

Takewhile:

1 4

Groupby:

A [('A', 1), ('A', 2)]

B [('B', 3), ('B', 4)]

lambda arguments: expression

add = lambda x, y: x + y

print(add(3, 5)) # Output: 8

8

When to Use Lambda Functions

Lambda functions are typically used in situations where a small function is needed for a
short period of time, such as:

Using Lambda Functions with map()

The map() function applies a function to all items in an iterable. Lambda functions are often
used with map() for concise transformations.

Example:

Using Lambda Functions with filter()

The filter() function filters elements from an iterable based on a condition. Lambda
functions are often used with filter() for concise filtering.

Example:

Using Lambda Functions with sorted()

As an argument to higher-order functions like map() , filter() , and sorted() .
For simple transformations or calculations.

numbers = [1, 2, 3, 4, 5]

squared = list(map(lambda x: x ** 2, numbers))

print(squared) # Output: [1, 4, 9, 16, 25]

[1, 4, 9, 16, 25]

numbers = [1, 2, 3, 4, 5]

evens = list(filter(lambda x: x % 2 == 0, numbers))

print(evens) # Output: [2, 4]

[2, 4]

The sorted() function sorts an iterable. Lambda functions can be used to define custom
sorting keys.

Example:

Lambda Functions in List Comprehensions

Lambda functions can also be used in list comprehensions for concise transformations.

Example:

Limitations of Lambda Functions

students = [

{"name": "Alice", "age": 25},

{"name": "Bob", "age": 22},

{"name": "Charlie", "age": 23}

]

Sort by age

sorted_students = sorted(students, key=lambda x: x["age"])

print(sorted_students)

Output: [{'name': 'Bob', 'age': 22}, {'name': 'Charlie', 'age': 23},

{'name': 'Alice', 'age': 25}]

[{'name': 'Bob', 'age': 22}, {'name': 'Charlie', 'age': 23}, {'name':

'Alice', 'age': 25}]

numbers = [1, 2, 3, 4, 5]

squared = [(lambda x: x ** 2)(x) for x in numbers]

print(squared) # Output: [1, 4, 9, 16, 25]

[1, 4, 9, 16, 25]

Single Expression: Lambda functions can only contain a single expression. They
cannot include statements like if , for , or while .
Readability: Overusing lambda functions can make code harder to read. For complex
logic, it’s better to use a regular function defined with def .

Example Program

10. Exceptions and Errors
In Python, exceptions are events that occur during the execution of a program that disrupt
the normal flow of instructions. When an exception occurs, Python raises an error, which
can be caught and handled to prevent the program from crashing.

Working with Lambda Functions

Basic lambda function

add = lambda x, y: x + y

print("Add:", add(3, 5)) # Output: 8

Using lambda with map()

numbers = [1, 2, 3, 4, 5]

squared = list(map(lambda x: x ** 2, numbers))

print("Squared:", squared) # Output: [1, 4, 9, 16, 25]

Using lambda with filter()

evens = list(filter(lambda x: x % 2 == 0, numbers))

print("Evens:", evens) # Output: [2, 4]

Using lambda with sorted()

students = [

{"name": "Alice", "age": 25},

{"name": "Bob", "age": 22},

{"name": "Charlie", "age": 23}

]

sorted_students = sorted(students, key=lambda x: x["age"])

print("Sorted Students:", sorted_students)

Output: [{'name': 'Bob', 'age': 22}, {'name': 'Charlie', 'age': 23},

{'name': 'Alice', 'age': 25}]

Using lambda in list comprehensions

squared = [(lambda x: x ** 2)(x) for x in numbers]

print("Squared (List Comprehension):", squared) # Output: [1, 4, 9, 16, 25]

Add: 8

Squared: [1, 4, 9, 16, 25]

Evens: [2, 4]

Sorted Students: [{'name': 'Bob', 'age': 22}, {'name': 'Charlie', 'age':

23}, {'name': 'Alice', 'age': 25}]

Squared (List Comprehension): [1, 4, 9, 16, 25]

Types of Errors

Handling Exceptions with try/except

To handle exceptions, use a try/except block. The try block contains the code that might
raise an exception, and the except block contains the code to handle the exception.

Syntax:

Example:

Handling Multiple Exceptions

You can handle multiple exceptions by specifying multiple except blocks or using a tuple.

1. Syntax Errors: Occur when the code violates Python’s syntax rules. These are detected
before the program runs.

print("Hello, World" # Missing closing parenthesis

2. Runtime Errors (Exceptions): Occur during the execution of the program. Examples
include:

ZeroDivisionError : Division by zero.
TypeError : Performing an operation on incompatible types.
ValueError : Passing an invalid value to a function.
FileNotFoundError : Trying to open a file that doesn’t exist.

try:

Code that might raise an exception

except ExceptionType:

Code to handle the exception

try:

result = 10 / 0

except ZeroDivisionError:

print("Error: Division by zero!")

Error: Division by zero!

Example:

The else Block

The else block is executed if no exceptions occur in the try block. It is useful for code that
should only run if the try block succeeds.

Example:

The finally Block

The finally block is executed no matter what—whether an exception occurs or not. It is
typically used for cleanup actions, such as closing files or releasing resources.

try:

num = int(input("Enter a number: "))

result = 10 / num

except ValueError:

print("Error: Invalid input. Please enter a number.")

except ZeroDivisionError:

print("Error: Division by zero.")

Enter a number: a

Error: Invalid input. Please enter a number.

try:

num = int(input("Enter a number: "))

result = 10 / num

except ValueError:

print("Error: Invalid input. Please enter a number.")

except ZeroDivisionError:

print("Error: Division by zero.")

else:

print("Result:", result)

Enter a number: 2

Result: 5.0

Example:

Raising Exceptions

You can raise exceptions manually using the raise keyword. This is useful for enforcing
constraints or signaling errors in your code.

Example:

Custom Exceptions

You can define your own exceptions by creating a new class that inherits from Python’s built-
in Exception class.

Example:

try:

file = open("example.txt", "r")

content = file.read()

print(content)

except FileNotFoundError:

print("Error: File not found.")

finally:

file.close()

print("File closed.")

Hello, World!

File closed.

def divide(a, b):

if b == 0:

raise ValueError("Cannot divide by zero.")

return a / b

try:

result = divide(10, 0)

except ValueError as e:

print(e) # Output: Cannot divide by zero.

Cannot divide by zero.

Example Program

class NegativeNumberError(Exception):

pass

def check_positive(number):

if number < 0:

raise NegativeNumberError("Negative numbers are not allowed.")

try:

check_positive(-5)

except NegativeNumberError as e:

print(e) # Output: Negative numbers are not allowed.

Negative numbers are not allowed.

Working with Exceptions and Errors

Handling exceptions

try:

num = int(input("Enter a number: "))

result = 10 / num

except ValueError:

print("Error: Invalid input. Please enter a number.")

except ZeroDivisionError:

print("Error: Division by zero.")

else:

print("Result:", result)

finally:

print("Execution complete.")

Raising exceptions

def divide(a, b):

if b == 0:

raise ValueError("Cannot divide by zero.")

return a / b

try:

result = divide(10, 0)

except ValueError as e:

print(e) # Output: Cannot divide by zero.

Custom exceptions

class NegativeNumberError(Exception):

pass

11. Logging
Logging is a way to track events that occur during the execution of a program. It is essential
for debugging, monitoring, and understanding the flow of your application. Python provides a
built-in logging module that makes it easy to add logging to your code.

Why Use Logging?

Logging Levels

The logging module provides several levels of logging, each representing the severity of
the event being logged. The levels, in increasing order of severity, are:

def check_positive(number):

if number < 0:

raise NegativeNumberError("Negative numbers are not allowed.")

try:

check_positive(-5)

except NegativeNumberError as e:

print(e) # Output: Negative numbers are not allowed.

Enter a number: 3

Result: 3.3333333333333335

Execution complete.

Cannot divide by zero.

Negative numbers are not allowed.

Debugging: Log messages can help you identify and fix issues in your code.
Monitoring: Logs provide insights into the behavior of your application in production.
Auditing: Logs can be used to track user actions and system events.

1. DEBUG : Detailed information for debugging.
2. INFO : General information about the program’s execution.
3. WARNING : Indicates a potential issue that doesn’t prevent the program from running.
4. ERROR : Indicates a more serious issue that may prevent part of the program from

functioning.

Basic Logging

To use the logging module, you first need to configure it. By default, the logging module
logs messages with a severity level of WARNING or higher.

Example:

Configuring Logging

You can configure the logging module to change the logging level, format, and output
destination.

Example:

5. CRITICAL : Indicates a critical issue that may prevent the entire program from
functioning.

import logging

Basic logging

logging.warning("This is a warning message.")

logging.error("This is an error message.")

logging.critical("This is a critical message.")

WARNING:root:This is a warning message.

ERROR:root:This is an error message.

CRITICAL:root:This is a critical message.

import logging

Configure logging

logging.basicConfig(

level=logging.DEBUG, # Set the logging level

format="%(asctime)s - %(levelname)s - %(message)s", # Set the log

format

filename="app.log", # Log to a file

filemode="w" # Overwrite the log file each time

)

Log messages

logging.debug("This is a debug message.")

logging.info("This is an info message.")

logging.warning("This is a warning message.")

Logging to Console and File

You can configure logging to output messages to both the console and a file using
handlers .

Example:

logging.error("This is an error message.")

logging.critical("This is a critical message.")

WARNING:root:This is a warning message.

ERROR:root:This is an error message.

CRITICAL:root:This is a critical message.

The log messages will be written to app.log in the specified format.

import logging

Create a logger

logger = logging.getLogger("my_logger")

logger.setLevel(logging.DEBUG)

Create a console handler

console_handler = logging.StreamHandler()

console_handler.setLevel(logging.WARNING)

Create a file handler

file_handler = logging.FileHandler("app.log")

file_handler.setLevel(logging.DEBUG)

Create a formatter

formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")

Add the formatter to the handlers

console_handler.setFormatter(formatter)

file_handler.setFormatter(formatter)

Add the handlers to the logger

logger.addHandler(console_handler)

logger.addHandler(file_handler)

Log messages

logger.debug("This is a debug message.")

logger.info("This is an info message.")

logger.warning("This is a warning message.")

Logging Exceptions

You can log exceptions using the logging.exception() method, which automatically
includes the exception traceback.

Example:

logger.error("This is an error message.")

logger.critical("This is a critical message.")

DEBUG:my_logger:This is a debug message.

INFO:my_logger:This is an info message.

2025-02-17 02:33:57,533 - WARNING - This is a warning message.

WARNING:my_logger:This is a warning message.

2025-02-17 02:33:57,535 - ERROR - This is an error message.

ERROR:my_logger:This is an error message.

2025-02-17 02:33:57,539 - CRITICAL - This is a critical message.

CRITICAL:my_logger:This is a critical message.

File Output (app.log):

with open('app.log', 'r') as file:

content = file.read()

print(content)

2025-02-17 02:33:57,514 - DEBUG - This is a debug message.

2025-02-17 02:33:57,531 - INFO - This is an info message.

2025-02-17 02:33:57,533 - WARNING - This is a warning message.

2025-02-17 02:33:57,535 - ERROR - This is an error message.

2025-02-17 02:33:57,539 - CRITICAL - This is a critical message.

import logging

Configure logging

logging.basicConfig(level=logging.DEBUG, format="%(asctime)s - %(levelname)s

- %(message)s")

try:

result = 10 / 0

except ZeroDivisionError:

logging.exception("An error occurred:")

Example Program

ERROR:root:An error occurred:

Traceback (most recent call last):

File "C:\Users\attila\AppData\Local\Temp\ipykernel_10184\3197086528.py",

line 7, in <module>

result = 10 / 0

~~~^~~

ZeroDivisionError: division by zero

# Working with Logging

import logging

# Configure logging

logging.basicConfig(

level=logging.DEBUG,

format="%(asctime)s - %(levelname)s - %(message)s",

filename="app.log",

filemode="w"

)

# Log messages

logging.debug("This is a debug message.")

logging.info("This is an info message.")

logging.warning("This is a warning message.")

logging.error("This is an error message.")

logging.critical("This is a critical message.")

# Logging exceptions

try:

result = 10 / 0

except ZeroDivisionError:

logging.exception("An error occurred:")

WARNING:root:This is a warning message.

ERROR:root:This is an error message.

CRITICAL:root:This is a critical message.

ERROR:root:An error occurred:

Traceback (most recent call last):

File "C:\Users\attila\AppData\Local\Temp\ipykernel_10184\351276769.py",

line 22, in <module>

result = 10 / 0



12. JSON
JSON (JavaScript Object Notation) is a lightweight data interchange format that is easy for
humans to read and write and easy for machines to parse and generate. It is widely used for
transmitting data between a server and a web application, as well as for configuration files
and data storage.

What is JSON?

JSON is a text format that represents data as key-value pairs. It is based on a subset of
JavaScript but is language-independent. JSON data is often stored in .json  files or
transmitted as strings.

Example JSON:

JSON Data Types

JSON supports the following data types:

~~~^~~

ZeroDivisionError: division by zero

{

"name": "Alice",

"age": 25,

"is_student": false,

"courses": ["Math", "Science"],

"address": {

"city": "New York",

"zip": "10001"

}

}

Strings: Enclosed in double quotes (" ").
Numbers: Integers or floating-point numbers.
Booleans: true or false .
Arrays: Ordered lists of values, enclosed in square brackets ([]).
Objects: Unordered collections of key-value pairs, enclosed in curly braces ({}).
null : Represents an empty or non-existent value.

Working with JSON in Python

Python provides the json module to encode and decode JSON data. The two main
functions are:

Encoding Python Objects to JSON

Use json.dumps() to convert a Python object (e.g., dictionary, list) to a JSON string.

Example:

json.dumps() : Converts a Python object to a JSON-formatted string.
json.loads() : Converts a JSON-formatted string to a Python object.

import json

Python dictionary

data = {

"name": "Alice",

"age": 25,

"is_student": False,

"courses": ["Math", "Science"],

"address": {

"city": "New York",

"zip": "10001"

}

}

Convert to JSON string

json_string = json.dumps(data, indent=4) # indent for pretty printing

print(json_string)

{

"name": "Alice",

"age": 25,

"is_student": false,

"courses": [

"Math",

"Science"

],

"address": {

"city": "New York",

"zip": "10001"

Decoding JSON to Python Objects

Use json.loads() to convert a JSON string to a Python object.

Example:

Reading and Writing JSON Files

You can read JSON data from a file and write JSON data to a file using the json.load()
and json.dump() functions.

}

}

import json

JSON string

json_string = '''

{

"name": "Alice",

"age": 25,

"is_student": false,

"courses": ["Math", "Science"],

"address": {

"city": "New York",

"zip": "10001"

}

}

'''

Convert to Python dictionary

data = json.loads(json_string)

print(data)

{'name': 'Alice', 'age': 25, 'is_student': False, 'courses': ['Math',

'Science'], 'address': {'city': 'New York', 'zip': '10001'}}

1. Reading from a JSON File:

import json

Read JSON data from a file

Handling Custom Objects

By default, the json module cannot serialize custom Python objects. To handle this, you
can define a custom encoder by subclassing json.JSONEncoder or by using the default
parameter in json.dumps() .

Example:

with open("data.json", "r") as file:

data = json.load(file)

print(data)

{'name': 'Alice', 'age': 25, 'is_student': False, 'courses': ['Math',

'Science'], 'address': {'city': 'New York', 'zip': '10001'}}

2. Writing to a JSON File:

import json

Python dictionary

data = {

"name": "Attila",

"age": 23,

"is_student": False,

"courses": ["Math", "Statics"],

"address": {

"city": "Urmia",

"zip": "50708"

}

}

Write JSON data to a file

with open("data.json", "w") as file:

json.dump(data, file, indent=4)

import json

from datetime import datetime

Custom object

class Person:

def __init__(self, name, age):

self.name = name

self.age = age

Example Program

Custom encoder function

def person_encoder(obj):

if isinstance(obj, Person):

return {"name": obj.name, "age": obj.age}

raise TypeError(f"Object of type {type(obj)} is not JSON serializable")

Create a Person object

person = Person("Alice", 25)

Convert to JSON string

json_string = json.dumps(person, default=person_encoder, indent=4)

print(json_string)

{

"name": "Alice",

"age": 25

}

Working with JSON

import json

Python dictionary

data = {

"name": "Alice",

"age": 25,

"is_student": False,

"courses": ["Math", "Science"],

"address": {

"city": "New York",

"zip": "10001"

}

}

Convert to JSON string

json_string = json.dumps(data, indent=4)

print("JSON String:")

print(json_string)

Convert JSON string to Python dictionary

data_parsed = json.loads(json_string)

print("\nParsed Data:")

print(data_parsed)

Write JSON data to a file

with open("data.json", "w") as file:

json.dump(data, file, indent=4)

Read JSON data from a file

with open("data.json", "r") as file:

data_from_file = json.load(file)

print("\nData from File:")

print(data_from_file)

Handling custom objects

class Person:

def __init__(self, name, age):

self.name = name

self.age = age

def person_encoder(obj):

if isinstance(obj, Person):

return {"name": obj.name, "age": obj.age}

raise TypeError(f"Object of type {type(obj)} is not JSON serializable")

person = Person("Alice", 25)

json_string_custom = json.dumps(person, default=person_encoder, indent=4)

print("\nCustom Object JSON String:")

print(json_string_custom)

JSON String:

{

"name": "Alice",

"age": 25,

"is_student": false,

"courses": [

"Math",

"Science"

],

"address": {

"city": "New York",

"zip": "10001"

}

}

Parsed Data:

{'name': 'Alice', 'age': 25, 'is_student': False, 'courses': ['Math',

'Science'], 'address': {'city': 'New York', 'zip': '10001'}}

Data from File:

{'name': 'Alice', 'age': 25, 'is_student': False, 'courses': ['Math',

'Science'], 'address': {'city': 'New York', 'zip': '10001'}}

13. Random Numbers
Generating random numbers is a common task in programming, whether for simulations,
games, or security applications. Python provides the random module, which includes
functions for generating random numbers, shuffling sequences, and selecting random
elements.

The random Module

The random module is part of Python’s standard library and provides various functions for
working with randomness. To use it, you need to import the module:

Generating Random Numbers

Custom Object JSON String:

{

"name": "Alice",

"age": 25

}

import random

1. random.random() : Generates a random float between 0.0 and 1.0.

print(random.random()) # Output: e.g., 0.3745401188473625

0.8484852847223121

2. random.uniform(a, b) : Generates a random float between a and b .

print(random.uniform(1.5, 4.5)) # Output: e.g., 2.345678901234567

2.384758360282017

3. random.randint(a, b) : Generates a random integer between a and b (inclusive).

Selecting Random Elements

Shuffling Sequences

print(random.randint(1, 10)) # Output: e.g., 7

8

4. random.randrange(start, stop, step) : Generates a random integer from a range.

print(random.randrange(0, 100, 5)) # Output: e.g., 45

65

1. random.choice(seq) : Selects a random element from a sequence (e.g., list, tuple,
string).

fruits = ["apple", "banana", "cherry"]

print(random.choice(fruits)) # Output: e.g., "banana"

banana

2. random.choices(seq, k=n) : Selects n random elements from a sequence (with
replacement).

print(random.choices(fruits, k=2)) # Output: e.g., ["cherry", "apple"]

['cherry', 'apple']

3. random.sample(seq, k=n) : Selects n unique random elements from a sequence
(without replacement).

print(random.sample(fruits, 2)) # Output: e.g., ["banana", "cherry"]

['apple', 'banana']

Seeding Random Numbers

The random.seed() function initializes the random number generator with a specific seed
value. This ensures that the sequence of random numbers is reproducible.

Example:

Example Program

4. random.shuffle(seq) : Shuffles a sequence in place (modifies the original sequence).

numbers = [1, 2, 3, 4, 5]

random.shuffle(numbers)

print(numbers) # Output: e.g., [3, 1, 5, 2, 4]

[4, 1, 3, 2, 5]

5. random.sample(seq, k=len(seq)) : Returns a shuffled version of the sequence without
modifying the original.

shuffled = random.sample(numbers, k=len(numbers))

print(shuffled) # Output: e.g., [4, 2, 5, 1, 3]

[3, 5, 4, 1, 2]

random.seed(42) # Set the seed

print(random.random()) # Output: 0.6394267984578837

print(random.random()) # Output: 0.025010755222666936

random.seed(42) # Reset the seed

print(random.random()) # Output: 0.6394267984578837 (same as before)

0.6394267984578837

0.025010755222666936

0.6394267984578837

Working with Random Numbers

import random

14. Decorators
Decorators are a powerful and flexible feature in Python that allow you to modify or extend
the behavior of functions or methods without changing their actual code. They are often used
for logging, access control, memoization, and more.

What Are Decorators?

Generating random numbers

print("Random float between 0.0 and 1.0:", random.random())

print("Random float between 1.5 and 4.5:", random.uniform(1.5, 4.5))

print("Random integer between 1 and 10:", random.randint(1, 10))

print("Random integer from range 0 to 100 (step 5):", random.randrange(0,

100, 5))

Selecting random elements

fruits = ["apple", "banana", "cherry"]

print("Random choice from fruits:", random.choice(fruits))

print("Random choices (with replacement):", random.choices(fruits, k=2))

print("Random sample (without replacement):", random.sample(fruits, 2))

Shuffling sequences

numbers = [1, 2, 3, 4, 5]

random.shuffle(numbers)

print("Shuffled numbers:", numbers)

Seeding random numbers

random.seed(42)

print("Random number with seed 42:", random.random())

random.seed(42)

print("Random number with seed 42 (again):", random.random())

Random float between 0.0 and 1.0: 0.025010755222666936

Random float between 1.5 and 4.5: 2.3250879551073576

Random integer between 1 and 10: 4

Random integer from range 0 to 100 (step 5): 20

Random choice from fruits: cherry

Random choices (with replacement): ['apple', 'cherry']

Random sample (without replacement): ['cherry', 'apple']

Shuffled numbers: [2, 3, 1, 4, 5]

Random number with seed 42: 0.6394267984578837

Random number with seed 42 (again): 0.6394267984578837

A decorator is a function that takes another function as input, adds some functionality to it,
and returns a new function. Decorators are applied using the @ symbol.

Example:

How Decorators Work

Decorators with Arguments

If the decorated function takes arguments, the wrapper function must accept those
arguments and pass them to the original function.

Example:

def my_decorator(func):

def wrapper():

print("Something is happening before the function is called.")

func()

print("Something is happening after the function is called.")

return wrapper

@my_decorator

def say_hello():

print("Hello!")

say_hello()

Something is happening before the function is called.

Hello!

Something is happening after the function is called.

1. The decorator function (my_decorator) takes a function (func) as an argument.
2. Inside the decorator, a new function (wrapper) is defined that adds some behavior

before and/or after calling the original function.
3. The decorator returns the wrapper function.
4. When the decorated function (say_hello) is called, the wrapper function is executed

instead.

def my_decorator(func):

def wrapper(*args, **kwargs):

print("Something is happening before the function is called.")

result = func(*args, **kwargs)

Chaining Decorators

You can apply multiple decorators to a single function. The decorators are applied from
bottom to top.

Example:

print("Something is happening after the function is called.")

return result

return wrapper

@my_decorator

def greet(name):

print(f"Hello, {name}!")

greet("Alice")

Something is happening before the function is called.

Hello, Alice!

Something is happening after the function is called.

def decorator1(func):

def wrapper():

print("Decorator 1")

func()

return wrapper

def decorator2(func):

def wrapper():

print("Decorator 2")

func()

return wrapper

@decorator1

@decorator2

def say_hello():

print("Hello!")

say_hello()

Decorator 1

Decorator 2

Hello!

Decorators with Arguments

You can create decorators that accept arguments by adding an extra layer of nesting.

Example:

Built-in Decorators

Python provides some built-in decorators, such as:

Example:

def repeat(num_times):

def decorator(func):

def wrapper(*args, **kwargs):

for _ in range(num_times):

result = func(*args, **kwargs)

return result

return wrapper

return decorator

@repeat(3)

def greet(name):

print(f"Hello, {name}!")

greet("Alice")

Hello, Alice!

Hello, Alice!

Hello, Alice!

1. @staticmethod : Defines a static method that does not depend on the instance or class.
2. @classmethod : Defines a class method that takes the class as its first argument.
3. @property : Defines a method as a property, allowing it to be accessed like an attribute.

class MyClass:

@staticmethod

def static_method():

print("This is a static method.")

@classmethod

def class_method(cls):

print(f"This is a class method of {cls.__name__}.")

@property

Example Program

def my_property(self):

return "This is a property."

Usage

MyClass.static_method() # Output: This is a static method.

MyClass.class_method() # Output: This is a class method of MyClass.

obj = MyClass()

print(obj.my_property) # Output: This is a property.

This is a static method.

This is a class method of MyClass.

This is a property.

Working with Decorators

Basic decorator

def my_decorator(func):

def wrapper():

print("Something is happening before the function is called.")

func()

print("Something is happening after the function is called.")

return wrapper

@my_decorator

def say_hello():

print("Hello!")

say_hello()

Decorator with arguments

def my_decorator(func):

def wrapper(*args, **kwargs):

print("Something is happening before the function is called.")

result = func(*args, **kwargs)

print("Something is happening after the function is called.")

return result

return wrapper

@my_decorator

def greet(name):

print(f"Hello, {name}!")

greet("Alice")

Chaining decorators

def decorator1(func):

def wrapper():

print("Decorator 1")

func()

return wrapper

def decorator2(func):

def wrapper():

print("Decorator 2")

func()

return wrapper

@decorator1

@decorator2

def say_hello():

print("Hello!")

say_hello()

Decorator with arguments

def repeat(num_times):

def decorator(func):

def wrapper(*args, **kwargs):

for _ in range(num_times):

result = func(*args, **kwargs)

return result

return wrapper

return decorator

@repeat(3)

def greet(name):

print(f"Hello, {name}!")

greet("Alice")

Built-in decorators

class MyClass:

@staticmethod

def static_method():

print("This is a static method.")

@classmethod

def class_method(cls):

print(f"This is a class method of {cls.__name__}.")

@property

def my_property(self):

15. Generators
Generators are a special type of iterator in Python that allow you to iterate over a sequence
of values without storing the entire sequence in memory. They are defined using functions
and the yield keyword. Generators are particularly useful for working with large datasets or
infinite sequences.

What Are Generators?

A generator is a function that returns an iterator. Instead of using return to produce a
value, a generator uses yield . When a generator function is called, it returns a generator
object that can be iterated over.

Example:

return "This is a property."

Usage

MyClass.static_method() # Output: This is a static method.

MyClass.class_method() # Output: This is a class method of MyClass.

obj = MyClass()

print(obj.my_property) # Output: This is a property.

Something is happening before the function is called.

Hello!

Something is happening after the function is called.

Something is happening before the function is called.

Hello, Alice!

Something is happening after the function is called.

Decorator 1

Decorator 2

Hello!

Hello, Alice!

Hello, Alice!

Hello, Alice!

This is a static method.

This is a class method of MyClass.

This is a property.

def simple_generator():

yield 1

yield 2

How Generators Work

Advantages of Generators

Creating Generators

yield 3

Create a generator object

gen = simple_generator()

Iterate over the generator

for value in gen:

print(value)

1

2

3

1. When a generator function is called, it returns a generator object but does not start
execution.

2. The generator function runs until it encounters a yield statement, which produces a
value and pauses the function.

3. The function resumes execution from where it left off when the next value is requested.

Memory Efficiency: Generators produce values on-the-fly, so they don’t store the entire
sequence in memory.
Lazy Evaluation: Values are computed only when needed, making generators ideal for
large or infinite sequences.

4. Using yield :
Define a generator function using the yield keyword.

Example:

def count_up_to(n):

count = 1

while count <= n:

yield count

count += 1

Infinite Generators

Generators can be used to create infinite sequences because they produce values on-the-
fly.

Example:

Create a generator object

gen = count_up_to(5)

Iterate over the generator

for value in gen:

print(value)

1

2

3

4

5

5. Generator Expressions:
Similar to list comprehensions, but use parentheses () instead of square brackets [] .

Example:

gen = (x ** 2 for x in range(5))

Iterate over the generator

for value in gen:

print(value)

0

1

4

9

16

def infinite_sequence():

num = 0

while True:

yield num

num += 1

Sending Values to Generators

You can send values to a generator using the send() method. This allows two-way
communication between the generator and the caller.

Example:

Example Program

Create a generator object

gen = infinite_sequence()

Print the first 5 values

for _ in range(5):

print(next(gen))

0

1

2

3

4

def generator_with_send():

value = yield

yield f"Received: {value}"

Create a generator object

gen = generator_with_send()

Start the generator

next(gen)

Send a value to the generator

result = gen.send("Hello")

print(result)

Received: Hello

Working with Generators

Simple generator

def simple_generator():

yield 1

yield 2

yield 3

gen = simple_generator()

print("Simple Generator:")

for value in gen:

print(value)

Generator with yield

def count_up_to(n):

count = 1

while count <= n:

yield count

count += 1

gen = count_up_to(5)

print("\nCount Up To 5:")

for value in gen:

print(value)

Generator expression

gen = (x ** 2 for x in range(5))

print("\nGenerator Expression:")

for value in gen:

print(value)

Infinite generator

def infinite_sequence():

num = 0

while True:

yield num

num += 1

gen = infinite_sequence()

print("\nInfinite Generator (First 5 Values):")

for _ in range(5):

print(next(gen))

Sending values to a generator

def generator_with_send():

value = yield

yield f"Received: {value}"

gen = generator_with_send()

next(gen)

result = gen.send("Hello")

16. Threading vs Multiprocessing
In Python, threading and multiprocessing are two approaches to achieve concurrency and
parallelism. They allow you to run multiple tasks simultaneously, but they work differently and
are suited for different types of problems.

What is Concurrency?

Concurrency is the ability of a program to manage multiple tasks at the same time. It doesn’t
necessarily mean that tasks are executed simultaneously; instead, the program switches
between tasks to make progress on all of them.

print("\nGenerator with Send:")

print(result)

Simple Generator:

1

2

3

Count Up To 5:

1

2

3

4

5

Generator Expression:

0

1

4

9

16

Infinite Generator (First 5 Values):

0

1

2

3

4

Generator with Send:

Received: Hello

What is Parallelism?

Parallelism is the ability of a program to execute multiple tasks simultaneously, typically by
leveraging multiple CPU cores.

Threading

Example:

Threads are lightweight processes that share the same memory space.
Threading is suitable for I/O-bound tasks (e.g., reading/writing files, network requests)
where the program spends time waiting for external resources.
Python’s Global Interpreter Lock (GIL) prevents multiple threads from executing Python
bytecode simultaneously, which can limit the performance of CPU-bound tasks.

import threading

import time

def print_numbers():

for i in range(5):

print(f"Thread 1: {i}")

time.sleep(1)

def print_letters():

for letter in "ABCDE":

print(f"Thread 2: {letter}")

time.sleep(1)

Create threads

thread1 = threading.Thread(target=print_numbers)

thread2 = threading.Thread(target=print_letters)

Start threads

thread1.start()

thread2.start()

Wait for threads to finish

thread1.join()

thread2.join()

print("Done!")

Multiprocessing

Example:

Thread 1: 0

Thread 2: A

Thread 1: 1

Thread 2: B

Thread 1: 2

Thread 2: C

Thread 1: 3

Thread 2: D

Thread 1: 4

Thread 2: E

Done!

Processes are independent instances of a program that run in separate memory
spaces.
Multiprocessing is suitable for CPU-bound tasks (e.g., mathematical computations)
where the program benefits from using multiple CPU cores.
Each process has its own Python interpreter and memory space, so the GIL is not a
limitation.

import multiprocessing

import time

def print_numbers():

for i in range(5):

print(f"Process 1: {i}")

time.sleep(1)

def print_letters():

for letter in "ABCDE":

print(f"Process 2: {letter}")

time.sleep(1)

Create processes

process1 = multiprocessing.Process(target=print_numbers)

process2 = multiprocessing.Process(target=print_letters)

Start processes

process1.start()

process2.start()

Wait for processes to finish

Key Differences Between Threading and Multiprocessing

Feature Threading Multiprocessing

Memory Threads share the same memory
space.

Processes have separate memory
spaces.

GIL Affected by the GIL (limits CPU-
bound tasks).

Not affected by the GIL.

Use Case Best for I/O-bound tasks. Best for CPU-bound tasks.

Overhead Low overhead. Higher overhead due to separate
memory spaces.

Scalability Limited by the GIL. Scales well with multiple CPU cores.

When to Use Threading vs Multiprocessing

process1.join()

process2.join()

print("Done!")

Process 1: 0

Process 2: A

Process 1: 1

Process 2: B

Process 1: 2

Process 2: C

Process 1: 3

Process 2: D

Process 1: 4Process 2: E

Done!

Use Threading:
For I/O-bound tasks (e.g., file I/O, network requests).
When tasks involve waiting for external resources.
When you need to share data between tasks (since threads share memory).

Use Multiprocessing:
For CPU-bound tasks (e.g., mathematical computations).
When you need to leverage multiple CPU cores.

Example Program

When tasks are independent and don’t need to share data.

Working with Threading and Multiprocessing

import threading

import multiprocessing

import time

Threading example

def print_numbers():

for i in range(5):

print(f"Thread 1: {i}")

time.sleep(1)

def print_letters():

for letter in "ABCDE":

print(f"Thread 2: {letter}")

time.sleep(1)

print("Threading Example:")

thread1 = threading.Thread(target=print_numbers)

thread2 = threading.Thread(target=print_letters)

thread1.start()

thread2.start()

thread1.join()

thread2.join()

print("Threading Done!\n")

Multiprocessing example

def print_numbers():

for i in range(5):

print(f"Process 1: {i}")

time.sleep(1)

def print_letters():

for letter in "ABCDE":

print(f"Process 2: {letter}")

time.sleep(1)

print("Multiprocessing Example:")

process1 = multiprocessing.Process(target=print_numbers)

process2 = multiprocessing.Process(target=print_letters)

17. Multithreading
Multithreading is a technique that allows a program to run multiple threads concurrently.
Threads are lightweight processes that share the same memory space, making them ideal
for I/O-bound tasks (e.g., file I/O, network requests) where the program spends time waiting
for external resources.

What is a Thread?

process1.start()

process2.start()

process1.join()

process2.join()

print("Multiprocessing Done!")

Threading Example:

Thread 1: 0

Thread 2: A

Thread 1: 1

Thread 2: B

Thread 1: 2

Thread 2: C

Thread 1: 3

Thread 2: D

Thread 1: 4

Thread 2: E

Threading Done!

Multiprocessing Example:

Process 1: 0

Process 2: A

Process 1: 1

Process 2: B

Process 1: 2

Process 2: C

Process 1: 3Process 2: D

Process 1: 4

Process 2: E

Multiprocessing Done!

A thread is the smallest unit of execution within a process. Multiple threads can exist within
the same process and share resources such as memory and file handles.

Advantages of Multithreading

Limitations of Multithreading in Python

Creating Threads

Python provides the threading module to work with threads. You can create a thread by
subclassing threading.Thread or by passing a target function to the threading.Thread
constructor.

Example:

Concurrency: Allows multiple tasks to run concurrently, improving responsiveness.
Resource Sharing: Threads share the same memory space, making it easier to share
data between tasks.
Efficiency: Threads are lightweight compared to processes, so creating and switching
between threads is faster.

Global Interpreter Lock (GIL): Python’s GIL prevents multiple threads from executing
Python bytecode simultaneously, which can limit the performance of CPU-bound tasks.
Thread Safety: Shared data between threads can lead to race conditions if not properly
synchronized.

import threading

import time

def print_numbers():

for i in range(5):

print(f"Thread 1: {i}")

time.sleep(1)

def print_letters():

for letter in "ABCDE":

print(f"Thread 2: {letter}")

time.sleep(1)

Create threads

thread1 = threading.Thread(target=print_numbers)

Thread Synchronization

When multiple threads access shared resources, you need to synchronize their access to
avoid race conditions. Python provides several synchronization primitives, such as locks,
semaphores, and conditions.

Example: Using a Lock

thread2 = threading.Thread(target=print_letters)

Start threads

thread1.start()

thread2.start()

Wait for threads to finish

thread1.join()

thread2.join()

print("Done!")

Thread 1: 0

Thread 2: A

Thread 1: 1

Thread 2: B

Thread 1: 2

Thread 2: C

Thread 1: 3

Thread 2: D

Thread 1: 4

Thread 2: E

Done!

import threading

Shared resource

counter = 0

lock = threading.Lock()

def increment():

global counter

for _ in range(100000):

with lock:

counter += 1

Create threads

Daemon Threads

A daemon thread is a thread that runs in the background and does not prevent the program
from exiting. When the main program exits, all daemon threads are automatically terminated.

Example:

thread1 = threading.Thread(target=increment)

thread2 = threading.Thread(target=increment)

Start threads

thread1.start()

thread2.start()

Wait for threads to finish

thread1.join()

thread2.join()

print("Counter:", counter) # Output: Counter: 200000

Counter: 200000

import threading

import time

def daemon_task():

while True:

print("Daemon thread is running...")

time.sleep(1)

Create a daemon thread

daemon_thread = threading.Thread(target=daemon_task, daemon=True)

Start the daemon thread

daemon_thread.start()

Main program

print("Main program is running...")

time.sleep(3)

print("Main program is done.")

Daemon thread is running...

Main program is running...

Daemon thread is running...

Daemon thread is running...

Thread Pools

A thread pool is a collection of pre-initialized threads that are ready to perform tasks.
Python’s concurrent.futures module provides a ThreadPoolExecutor for managing
thread pools.

Example:

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Main program is done.

from concurrent.futures import ThreadPoolExecutor

import time

def task(name):

print(f"Task {name} started")

time.sleep(2)

print(f"Task {name} finished")

Create a thread pool with 3 threads

with ThreadPoolExecutor(max_workers=3) as executor:

Submit tasks to the thread pool

futures = [executor.submit(task, i) for i in range(5)]

print("All tasks completed.")

Task 0 started

Task 1 started

Task 2 started

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Example Program

Daemon thread is running...

Task 0 finished

Task 3 started

Task 1 finished

Task 4 started

Task 2 finished

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Task 3 finished

Task 4 finished

All tasks completed.

Working with Multithreading

import threading

import time

from concurrent.futures import ThreadPoolExecutor

Basic threading example

def print_numbers():

for i in range(5):

print(f"Thread 1: {i}")

time.sleep(1)

def print_letters():

for letter in "ABCDE":

print(f"Thread 2: {letter}")

time.sleep(1)

print("Basic Threading Example:")

thread1 = threading.Thread(target=print_numbers)

thread2 = threading.Thread(target=print_letters)

thread1.start()

thread2.start()

thread1.join()

thread2.join()

print("Basic Threading Done!\n")

Thread synchronization example

counter = 0

lock = threading.Lock()

def increment():

global counter

for _ in range(100000):

with lock:

counter += 1

print("Thread Synchronization Example:")

thread1 = threading.Thread(target=increment)

thread2 = threading.Thread(target=increment)

thread1.start()

thread2.start()

thread1.join()

thread2.join()

print("Counter:", counter)

print("Thread Synchronization Done!\n")

Daemon thread example

def daemon_task():

while True:

print("Daemon thread is running...")

time.sleep(1)

print("Daemon Thread Example:")

daemon_thread = threading.Thread(target=daemon_task, daemon=True)

daemon_thread.start()

print("Main program is running...")

time.sleep(3)

print("Main program is done.\n")

Thread pool example

def task(name):

print(f"Task {name} started")

time.sleep(2)

print(f"Task {name} finished")

print("Thread Pool Example:")

with ThreadPoolExecutor(max_workers=3) as executor:

futures = [executor.submit(task, i) for i in range(5)]

print("All tasks completed.")

Daemon thread is running...

Basic Threading Example:

Thread 1: 0

Thread 2: A

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Thread 1: 1

Thread 2: B

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Thread 1: 2

Thread 2: C

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Thread 1: 3

Thread 2: D

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Thread 1: 4

Thread 2: E

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Basic Threading Done!

Thread Synchronization Example:

Daemon thread is running...

Counter: 200000

Thread Synchronization Done!

Daemon Thread Example:

Daemon thread is running...

Main program is running...

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

18. Multiprocessing in Python
Multiprocessing is a Python module that allows you to create processes that can run
concurrently, taking advantage of multiple CPU cores. This is particularly useful for CPU-

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Main program is done.

Thread Pool Example:

Task 0 started

Daemon thread is running...

Task 1 started

Task 2 started

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Task 0 finished

Task 3 started

Task 1 finished

Task 4 started

Daemon thread is running...

Task 2 finished

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Task 3 finished

Task 4 finished

Daemon thread is running...

All tasks completed.

bound tasks (tasks that require heavy computation) because it enables true parallel
execution, unlike threading, which is limited by Python's Global Interpreter Lock (GIL).

Key Concepts in Multiprocessing

Basic Usage of Multiprocessing

To use the multiprocessing module, you typically follow these steps:

Here’s an example:

1. Process: A process is an instance of a program that runs independently. Each process
has its own memory space, which means it doesn’t share data with other processes by
default.

2. Parallelism: Multiprocessing enables parallelism, where multiple tasks are executed
simultaneously on different CPU cores.

3. Inter-Process Communication (IPC): Processes can communicate with each other
using mechanisms like Queue , Pipe , or shared memory.

4. GIL (Global Interpreter Lock): The GIL prevents multiple threads from executing Python
bytecode simultaneously in a single process. Multiprocessing avoids this limitation by
using separate processes.

1. Import the multiprocessing module.
2. Define a function that will run in a separate process.
3. Create a Process object and specify the target function.
4. Start the process using the start() method.
5. Optionally, wait for the process to finish using the join() method.

import multiprocessing

import time

def worker_function(name):

print(f"Process {name} started")

time.sleep(2) # Simulate some work

print(f"Process {name} finished")

if __name__ == "__main__":

Create two processes

process1 = multiprocessing.Process(target=worker_function, args=

("Process 1",))

process2 = multiprocessing.Process(target=worker_function, args=

("Process 2",))

Start the processes

Notice

there is " Daemon thread is running... " in the out put.

Why This Happens in Jupyter Notebook

Jupyter Notebooks run on an IPython kernel, which has its own event loop and threading
model. When you use the multiprocessing module, it can sometimes interfere with the
kernel's behavior, leading to unexpected output or behavior, such as the repeated "Daemon
thread is running..." messages.This could solved by restarting the kernel in Jupyter
Notebook.

Key Components of Multiprocessing

process1.start()

process2.start()

Wait for the processes to finish

process1.join()

process2.join()

print("All processes finished")

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Process Process 1 started

Process Process 2 started

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Process Process 1 finished

Process Process 2 finished

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

All processes finished

6. Process Class:
Used to create and manage processes.
Key methods:

start() : Starts the process.
join() : Waits for the process to complete.
is_alive() : Checks if the process is still running.

7. Queue :
A thread-safe way to share data between processes.
Example:

import multiprocessing

def worker(q):

q.put("Hello from the worker process!")

if __name__ == "__main__":

q = multiprocessing.Queue()

p = multiprocessing.Process(target=worker, args=(q,))

p.start()

print(q.get()) # Output: Hello from the worker process!

p.join()

Hello from the worker process!

8. Pool :
A pool of worker processes for parallel execution of a function across multiple inputs.
Example:

import multiprocessing

def square(x):

return x * x

if __name__ == "__main__":

with multiprocessing.Pool(processes=4) as pool:

results = pool.map(square, range(10))

print(results) # Output: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

9. Pipe :
A two-way communication channel between processes.
Example:

import multiprocessing

Advantages of Multiprocessing

Disadvantages of Multiprocessing

def worker(conn):

conn.send("Message from worker")

conn.close()

if __name__ == "__main__":

parent_conn, child_conn = multiprocessing.Pipe()

p = multiprocessing.Process(target=worker, args=(child_conn,))

p.start()

print(parent_conn.recv()) # Output: Message from worker

p.join()

Daemon thread is running...

Message from worker

Daemon thread is running...

10. Shared Memory:

Allows processes to share data using Value and Array .
Example:

import multiprocessing

def worker(val):

val.value += 1

if __name__ == "__main__":

shared_value = multiprocessing.Value("i", 0) # 'i' for integer

p = multiprocessing.Process(target=worker, args=(shared_value,))

p.start()

p.join()

print(shared_value.value) # Output: 1

1

True parallel execution for CPU-bound tasks.
Avoids the GIL limitation.
Each process has its own memory space, reducing the risk of data corruption.

Higher memory usage compared to threading.

19. Function Arguments in Python
In Python, functions can accept arguments (also called parameters) to make them more
flexible and reusable. Understanding how to work with function arguments is essential for
writing clean and efficient code. Python supports several types of function arguments:

Let’s explore each of these in detail.

1. Positional Arguments

Positional arguments are the most common type of arguments. They are passed to a
function in the order they are defined.

2. Keyword Arguments

Keyword arguments are passed with a keyword (i.e., the parameter name) and can be in any
order.

Inter-process communication can be complex.
Slower to start compared to threads due to the overhead of creating new processes.

1. Positional Arguments
2. Keyword Arguments
3. Default Arguments
4. Variable-Length Arguments (*args and `kwargs`)**
5. Keyword-Only Arguments
6. Positional-Only Arguments (Python 3.8+)

def greet(name, message):

print(f"{message}, {name}!")

greet("Alice", "Hello") # Output: Hello, Alice!

Hello, Alice!

The order of arguments matters. "Alice" is assigned to name , and "Hello" is
assigned to message .

3. Default Arguments

Default arguments allow you to define a default value for a parameter. If the caller doesn’t
provide a value, the default is used.

Note: Default arguments are evaluated only once when the function is defined, not each
time the function is called. Be careful with mutable default arguments (e.g., lists or
dictionaries).

4. Variable-Length Arguments

Python allows you to handle an arbitrary number of arguments using *args and **kwargs .

Example with *args :

greet(message="Hi", name="Bob") # Output: Hi, Bob!

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

Hi, Bob!

Here, the order doesn’t matter because the arguments are explicitly named.

def greet(name, message="Hello"):

print(f"{message}, {name}!")

greet("Alice") # Output: Hello, Alice!

greet("Bob", "Hi") # Output: Hi, Bob!

Daemon thread is running...

Daemon thread is running...

Hello, Alice!

Hi, Bob!

message has a default value of "Hello" , so it’s optional.

*args : Used to pass a variable number of positional arguments. It collects them into a
tuple.
`kwargs`**: Used to pass a variable number of keyword arguments. It collects them into a
dictionary.

Example with `kwargs`:**

5. Keyword-Only Arguments

Keyword-only arguments are arguments that can only be passed using the keyword syntax.
They are defined after a * in the function signature.

def add(*args):

return sum(args)

print(add(1, 2, 3)) # Output: 6

print(add(4, 5, 6, 7)) # Output: 22

Daemon thread is running...

Daemon thread is running...

6

22

def display_info(**kwargs):

for key, value in kwargs.items():

print(f"{key}: {value}")

display_info(name="Alice", age=30, city="New York")

Output:

name: Alice

age: 30

city: New York

name: Alice

age: 30

city: New York

def greet(*, name, message):

print(f"{message}, {name}!")

greet(name="Alice", message="Hi") # Output: Hi, Alice!

greet("Alice", "Hi") # This would raise a TypeError

Hi, Alice!

The * enforces that all arguments after it must be passed as keyword arguments.

6. Positional-Only Arguments (Python 3.8+)

Positional-only arguments are arguments that can only be passed by position. They are
defined before a / in the function signature.

Combining All Types of Arguments

You can combine all these types of arguments in a single function. The order of parameters
must follow this rule:

Example:

Best Practices for Function Arguments

def greet(name, /, message):

print(f"{message}, {name}!")

greet("Alice", message="Hi") # Output: Hi, Alice!

greet(name="Alice", message="Hi") # This would raise a TypeError

Hi, Alice!

The / enforces that all arguments before it must be passed as positional arguments.

1. Positional-only arguments (before /).
2. Regular positional arguments.
3. *args (variable-length positional arguments).
4. Keyword-only arguments (after *).
5. **kwargs (variable-length keyword arguments).

def example(a, b, /, c, d=4, *args, e, f=6, **kwargs):

print(f"a: {a}, b: {b}, c: {c}, d: {d}, args: {args}, e: {e}, f: {f},

kwargs: {kwargs}")

example(1, 2, 3, e=5, extra="hello")

Output:

a: 1, b: 2, c: 3, d: 4, args: (), e: 5, f: 6, kwargs: {'extra': 'hello'}

a: 1, b: 2, c: 3, d: 4, args: (), e: 5, f: 6, kwargs: {'extra': 'hello'}

20. The Asterisk (*) Operator in Python
The asterisk (*) operator is a versatile symbol in Python with multiple uses depending on
the context. Here are the main ways it is used:

Let’s explore each of these in detail.

1. Multiplication and Exponentiation

The * operator is used for multiplication and the ** operator is used for exponentiation.

2. Unpacking Iterables

Use descriptive names for parameters to improve readability.
Avoid mutable default arguments (e.g., def func(arg=[])) to prevent unexpected
behavior.
Use *args and **kwargs sparingly, as they can make the function signature less clear.
Use keyword-only arguments to enforce clarity and prevent misuse.

1. Multiplication and Exponentiation
2. Unpacking Iterables
3. Extended Unpacking (Python 3+)
4. Variable-Length Arguments in Functions (*args)
5. Unpacking in Function Calls
6. Keyword Argument Unpacking (``)**
7. Keyword-Only Arguments in Functions

Multiplication

result = 5 * 3

print(result) # Output: 15

Exponentiation

result = 2 ** 3

print(result) # Output: 8

15

8

The * operator can be used to unpack iterables (e.g., lists, tuples) into individual
elements.

This is equivalent to:

3. Extended Unpacking (Python 3+)

Python 3 introduced extended unpacking, which allows you to unpack parts of an iterable.

4. Variable-Length Arguments in Functions (*args)

The * operator is used in function definitions to accept a variable number of positional
arguments. These arguments are collected into a tuple.

numbers = [1, 2, 3]

print(*numbers) # Output: 1 2 3

1 2 3

print(1, 2, 3)

1 2 3

first, *middle, last = [1, 2, 3, 4, 5]

print(first) # Output: 1

print(middle) # Output: [2, 3, 4]

print(last) # Output: 5

Daemon thread is running...

Daemon thread is running...

Daemon thread is running...

1

[2, 3, 4]

5

*middle captures all the elements between the first and last elements.

def sum_numbers(*args):

return sum(args)

5. Unpacking in Function Calls

The * operator can be used to unpack an iterable into individual arguments when
calling a function.

6. Keyword Argument Unpacking (``)**

The ** operator is used to unpack a dictionary into keyword arguments.

print(sum_numbers(1, 2, 3)) # Output: 6

print(sum_numbers(4, 5, 6, 7)) # Output: 22

6

22

*args allows the function to accept any number of positional arguments.

def greet(name, message):

print(f"{message}, {name}!")

data = ["Alice", "Hello"]

greet(*data) # Output: Hello, Alice!

Hello, Alice!

*data unpacks the list into two arguments: name="Alice" and message="Hello" .

def greet(name, message):

print(f"{message}, {name}!")

data = {"name": "Bob", "message": "Hi"}

greet(**data) # Output: Hi, Bob!

Hi, Bob!

**data unpacks the dictionary into keyword arguments: name="Bob" and
message="Hi" .

7. Keyword-Only Arguments in Functions

The * operator can be used in function definitions to enforce keyword-only arguments.
Arguments after * must be passed as keyword arguments.

Combining * and `` in Function Calls**

You can combine * and ** to unpack both positional and keyword arguments.

Summary of Uses

Use Case Example

Multiplication 5 * 3 → 15

Exponentiation 2 ** 3 → 8

Unpacking iterables print(*[1, 2, 3]) → 1 2 3

Extended unpacking first, *middle, last = [1, 2, 3, 4, 5]

Variable-length arguments (*args) def func(*args): ...

Unpacking in function calls func(*[1, 2, 3])

def greet(*, name, message):

print(f"{message}, {name}!")

greet(name="Alice", message="Hi") # Output: Hi, Alice!

greet("Alice", "Hi") # This would raise a TypeError

Hi, Alice!

The * ensures that name and message must be passed as keyword arguments.

def func(a, b, c):

print(f"a: {a}, b: {b}, c: {c}")

args = [1, 2]

kwargs = {"c": 3}

func(*args, **kwargs) # Output: a: 1, b: 2, c: 3

a: 1, b: 2, c: 3

Use Case Example

Keyword argument unpacking (**) func(**{"a": 1, "b": 2})

Keyword-only arguments def func(*, a, b): ...

21. Shallow vs Deep Copying in Python
In Python, copying objects is a common operation, but it’s important to understand the
difference between shallow copying and deep copying. The behavior of these operations
depends on whether the object contains mutable or immutable elements.

Key Concepts

Shallow Copy

A shallow copy creates a new object but does not recursively copy nested objects. Instead, it
inserts references to the original nested objects.

How to Create a Shallow Copy:

1. Mutable vs Immutable Objects:
Mutable objects: Objects whose state can be changed after creation (e.g., lists,
dictionaries, sets).
Immutable objects: Objects whose state cannot be changed after creation (e.g.,
integers, strings, tuples).

2. Assignment:
When you assign an object to a new variable, both variables reference the same
object in memory.
Changes to the object through one variable will affect the other.

3. Shallow Copy:
Creates a new object but inserts references to the original nested objects.
Changes to mutable nested objects will affect both the original and the copy.

4. Deep Copy:
Creates a new object and recursively copies all nested objects.
Changes to mutable nested objects will not affect the original or the copy.

Use the copy() method (for lists, dictionaries, etc.).
Use the copy.copy() function from the copy module.

Example:

Deep Copy

A deep copy creates a new object and recursively copies all nested objects, ensuring that no
references to the original nested objects are retained.

How to Create a Deep Copy:

Example:

import copy

original = [[1, 2, 3], [4, 5, 6]]

shallow_copy = copy.copy(original)

Modify the nested list in the shallow copy

shallow_copy[0][0] = 99

print(original) # Output: [[99, 2, 3], [4, 5, 6]]

print(shallow_copy) # Output: [[99, 2, 3], [4, 5, 6]]

[[99, 2, 3], [4, 5, 6]]

[[99, 2, 3], [4, 5, 6]]

Notice that modifying the nested list in the shallow copy also affects the original.

Use the copy.deepcopy() function from the copy module.

import copy

original = [[1, 2, 3], [4, 5, 6]]

deep_copy = copy.deepcopy(original)

Modify the nested list in the deep copy

deep_copy[0][0] = 99

print(original) # Output: [[1, 2, 3], [4, 5, 6]]

print(deep_copy) # Output: [[99, 2, 3], [4, 5, 6]]

[[1, 2, 3], [4, 5, 6]]

[[99, 2, 3], [4, 5, 6]]

Notice that modifying the nested list in the deep copy does not affect the original.

When to Use Shallow Copy vs Deep Copy

Use Case Shallow Copy Deep Copy

Object contains
only immutable
elements

Use shallow copy (no
difference in behavior).

Use deep copy (no difference
in behavior).

Object contains
mutable nested
objects

Use shallow copy if you want
changes to nested objects to
affect the original.

Use deep copy if you want
changes to nested objects to
not affect the original.

Performance Faster (less memory and
computation).

Slower (more memory and
computation due to recursive
copying).

Practical Examples

Example 1: Shallow Copy with a List of Lists

Example 2: Deep Copy with a List of Lists

import copy

original = [[1, 2], [3, 4]]

shallow_copy = copy.copy(original)

shallow_copy[0][0] = 99

print(original) # Output: [[99, 2], [3, 4]]

print(shallow_copy) # Output: [[99, 2], [3, 4]]

[[99, 2], [3, 4]]

[[99, 2], [3, 4]]

import copy

original = [[1, 2], [3, 4]]

deep_copy = copy.deepcopy(original)

deep_copy[0][0] = 99

print(original) # Output: [[1, 2], [3, 4]]

print(deep_copy) # Output: [[99, 2], [3, 4]]

Example 3: Shallow Copy with a Dictionary

Example 4: Deep Copy with a Dictionary

Summary

Aspect Shallow Copy Deep Copy

Copies nested
objects?

No (references are shared). Yes (recursively copies nested
objects).

Performance Faster. Slower.

Use Case When nested objects are
immutable or shared references
are acceptable.

When nested objects are
mutable and independent copies
are needed.

[[1, 2], [3, 4]]

[[99, 2], [3, 4]]

import copy

original = {"a": [1, 2], "b": [3, 4]}

shallow_copy = copy.copy(original)

shallow_copy["a"][0] = 99

print(original) # Output: {'a': [99, 2], 'b': [3, 4]}

print(shallow_copy) # Output: {'a': [99, 2], 'b': [3, 4]}

{'a': [99, 2], 'b': [3, 4]}

{'a': [99, 2], 'b': [3, 4]}

import copy

original = {"a": [1, 2], "b": [3, 4]}

deep_copy = copy.deepcopy(original)

deep_copy["a"][0] = 99

print(original) # Output: {'a': [1, 2], 'b': [3, 4]}

print(deep_copy) # Output: {'a': [99, 2], 'b': [3, 4]}

{'a': [1, 2], 'b': [3, 4]}

{'a': [99, 2], 'b': [3, 4]}

22. Context Managers in Python
Context managers are a way to manage resources (e.g., files, database connections, locks)
in Python. They ensure that resources are properly acquired and released, even if an
exception occurs. The most common use of context managers is with the with statement.

Key Concepts

Using Context Managers

The most common example of a context manager is working with files. Instead of manually
opening and closing a file, you can use the with statement to ensure the file is properly
closed.

Example: File Handling with with

1. Resource Management:
Resources like files, network connections, or locks need to be properly
opened/acquired and closed/released.
Failing to release resources can lead to leaks, which can cause performance issues
or crashes.

2. Context Manager Protocol:
A context manager is an object that implements the __enter__ and __exit__
methods.
The __enter__ method is called when entering the with block.
The __exit__ method is called when exiting the with block, even if an exception
occurs.

3. The with Statement:
The with statement simplifies resource management by automatically calling the
__enter__ and __exit__ methods.

Without context manager

file = open("example.txt", "w")

file.write("Hello, World!")

file.close() # Must remember to close the file

With context manager

with open("example.txt", "w") as file:

Creating Custom Context Managers

You can create your own context managers by defining a class with __enter__ and
__exit__ methods.

Example: Custom Context Manager

Using contextlib for Simpler Context Managers

The contextlib module provides utilities for creating context managers without defining a
class. The most common utility is contextlib.contextmanager , which allows you to create

file.write("Hello, World!")

File is automatically closed when the block is exited

The with statement ensures that the file is closed, even if an exception occurs within
the block.

class MyContextManager:

def __enter__(self):

print("Entering the context")

return self # Optional: Return an object to use in the `with` block

def __exit__(self, exc_type, exc_value, traceback):

print("Exiting the context")

if exc_type is not None:

print(f"An exception occurred: {exc_value}")

Return True to suppress the exception, False to propagate it

return False

Using the custom context manager

with MyContextManager() as cm:

print("Inside the context")

raise ValueError("Something went wrong") # Uncomment to test

exception handling

Entering the context

Inside the context

Exiting the context

If an exception occurs, the __exit__ method is still called, and you can handle the
exception within it.

a context manager using a generator function.

Example: Context Manager with contextlib

Common Use Cases for Context Managers

from contextlib import contextmanager

@contextmanager

def my_context_manager():

print("Entering the context")

try:

yield # The block inside the `with` statement runs here

except Exception as e:

print(f"An exception occurred: {e}")

finally:

print("Exiting the context")

Using the context manager

with my_context_manager():

print("Inside the context")

raise ValueError("Something went wrong") # Uncomment to test

exception handling

Entering the context

Inside the context

Exiting the context

4. File Handling:
Automatically close files after reading or writing.

with open("example.txt", "r") as file:

content = file.read()

5. Database Connections:
Automatically close database connections.

with db_connection() as conn:

cursor = conn.cursor()

cursor.execute("SELECT * FROM table")

6. Locks in Multithreading:
Automatically release locks.

Advantages of Context Managers

Summary

Aspect Details

Purpose Manage resources (e.g., files, locks) safely and efficiently.

Syntax with context_manager as variable: ...

Built-in Context
Managers

open() , threading.Lock() , contextlib.redirect_stdout() ,
etc.

Custom Context
Managers

Implement __enter__ and __exit__ methods or use
contextlib.contextmanager .

Exception Handling The __exit__ method can handle exceptions raised in the
with block.

with threading.Lock():

Critical section

pass

7. Temporary Changes:
Temporarily change the state (e.g., redirecting stdout).

from contextlib import redirect_stdout

import io

f = io.StringIO()

with redirect_stdout(f):

print("This goes to the buffer")

print(f.getvalue()) # Output: This goes to the buffer

This goes to the buffer

Resource Safety: Ensures resources are properly released, even if an exception
occurs.
Readability: Makes code cleaner and easier to understand.
Reusability: Context managers can be reused across different parts of the code.

